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Abstract

Thermodynamic properties of a Bose gas with

tuneable interactions

Robert Lorne Dugald Campbell

This thesis describes the design, construction and optimisation of a new set of apparatus

for the creation of 39K Bose-Einstein condensates. This system is used to investigate

the effects of repulsive inter-atomic interactions on the saturation of excited states and

the shift in the critical temperature of harmonically trapped Bose gases.

Bose-Einstein condensates of over 4×105 atoms have been produced in a crossed op-

tical dipole trap after sympathetic cooling with 87Rb in a quadrupole-Ioffe-configuration

magnetic trap. Condensation is made possible by tuning the scattering length of 39K to

positive values by means of a broad magnetically-tuneable Feshbach resonance centred

at 402.5 G.

The ability to tune the scattering length in this system is used to scrutinise the

concept of saturation of the thermal component of a Bose gas. We observe strong devi-

ations from the ideal theory over a wide range of interaction strengths. Extrapolation

to the non-interacting limit shows that the saturation picture is recovered for an ideal

gas.

High-precision measurements of the shift in critical temperature of a harmonically

trapped Bose gas are performed, using a novel differential measurement method. In the

weakly-interacting limit the data show excellent agreement with mean-field theory. For

stronger interactions an additional positive shift is observed, characteristic of beyond-

mean-field effects due to critical correlations. Non-equilibrium behaviour is observed

in the limits of very-strong and very-weak interactions.
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Chapter 1

Introduction

“ I don’t know if you have had the same experience, but the snag I

always come up against when I’m telling a story is this dashed difficult

problem of where to begin it.”

– P. G. Wodehouse (Right Ho, Jeeves)

The quantum regime in which a Bose-Einstein condensate (BEC) can exist seems a far

cry from day-to-day experiences of the world around us. Classical mechanics provides an

excellent description for our interactions with macroscopic objects, which we naturally

find to be intuitive. However, the quantum mechanical description takes into account

the true wave nature of matter. Yet for a gas at room temperature, the extent of

these wave-packets is much smaller than the inter-particle separation. The atoms and

molecules can be thought of as hard billiard balls colliding with one another, and the

behaviour of the gas is also well-described by a classical statistical treatment.

If, however, the spacing is decreased or the wave-packets spread out such that

they start to overlap with one another, a classical description is not sufficient, and

quantum mechanical behaviour takes hold. In the case that the particles are identical

bosons (which have integer quantum mechanical spin), the remarkable result is that,

below a critical finite temperature, they start to macroscopically occupy the single-

particle quantum ground state of the system. At this point the particles are completely

indistinguishable, forming a single matter-wave; in other words a BEC.

This phase transition was predicted by Einstein [1], following from the work of Bose

[2], in 1925. However, it wasn’t until 70 years later that it was first realised in a gas of

atoms in the group of Wieman and Cornell [3] and soon after in the group of Ketterle

[4]. It took so long to achieve because of the extreme low temperatures required. To

avoid the formation of a solid the atoms must be kept extremely dilute, several million

times lower than the density of air. The thermal wavelength of the particles must

therefore be increased to an extent that can only be achieved by cooling the atoms

to near the photon recoil limit (the temperature associated with the momentum ‘kick’

of a single photon). This is typically around 1/10,000,000 of a degree above absolute

zero, where atoms move at speeds of millimetres per second rather than at hundreds of

1
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Figure 1.1: Logarithmic temperature scale. Bose-Einstein condensation typically occurs near
the recoil limit in a dilute atomic gas.

metres per second (as they do at room temperature). This is put into context in Fig.

1.1 where it may be seen that on a logarithmic scale we live at a temperature closer to

that at the centre of the sun than at which a BEC is formed.

The bulk of the cooling of atoms from room temperature to quantum degeneracy is

achieved with a combination of the scattering force of laser light (the same force that

directs a comet’s tail away from the sun) and evaporation of the most energetic atoms

in the latter stages (the process that our bodies employ to keep cool via perspiration).

The development of laser cooling and trapping techniques for neutral atoms was recog-

nised with the 1997 Nobel prize in physics, while the 2001 prize was awarded for the

attainment of the BEC itself.

The motivation to produce these condensates in the lab has not simply been driven

by the desire to verify Einstein’s prediction. Though quantum effects naturally origi-

nate at the atomic scale, they also lead to some more familiar macroscopic behaviour,

such as superconductivity, superfluidity and semiconductor properties. Such many-

body quantum phenomena can be studied using ultracold gases to simulate relevant

theoretical models, where the experimentalist has a high degree of control over nearly

all of the system parameters. Often the inter-atomic interactions are weak in these

systems, and the corresponding theoretical problems are easily solved. The system pa-

rameters can then be tuned to a regime in which these theories break down, providing

new insight into previously impenetrable processes.

Recent additions to the experimental arsenal include the introduction of optical

confinement to reduce the dimensionality of the system and to create strong periodic

potentials, and the ability to directly tune the strength of interactions using a Feshbach

resonance. These methods allow the study of strongly correlated systems, more typi-

cally associated with quantum liquids (such as superfluid helium). The overall picture

is that of a system in which we have great control over most parameters, enabling the

study of a wide range of phenomena in different regimes. An extensive review of recent

experimental and theoretical progress concerning many-body physics with ultracold

2



1.1 Why 39K?

gases is provided in [5].

Before we are able to experimentally study these many and various fascinating top-

ics, we first have to build a system that allows us to reach the ultracold regime. This

requires the combination of many technological disciplines, including those of ultra-

high vacuum, laser light, electromagnetic coils, radio frequency (RF) and microwave

radiation, while carefully synchronising the operation of the components by means of

computer control. After giving the arguments for the choice of atomic species used

in our system the remainder of this chapter is given over to basic theory of the Bose

condensed state and interactions of bosons with electromagnetic fields and one another.

Chapters 2 and 3 describe the experimental setup and process respectively, while Chap-

ters 4 and 5 report on the first new science to have been studied with the system. Finally

a summary of our findings and future directions for research is provided in Chapter 6.

1.1 Why 39K?

As a brand new group setting out to build a complete system for the study of quantum

gases it would be understandable to stick to a ‘safe’ atomic species. Though our field

is still young there are now well over a hundred research groups worldwide producing

BECs every day. Most of these groups use isotopes of lithium, sodium, rubidium and

caesium in their experiments, providing a wealth of information to aid the prospective

atomic physicist. In contrast the successful condensation of 39K was first reported

only a matter of months before the formation of our group, after a series of pioneering

experiments at LENS in Florence [6, 7]. This achievement itself was founded on previous

work with the other isotopes of potassium [8, 9]. Potassium was a latecomer to the

quantum degenerate regime due to unfavourable atomic properties which hamper its

cooling and in the case of 39K condensation itself.

Initially we concentrated on the relatively straight-forward task of condensing 87Rb,

whilst preparing for the possibility of cooling 40K to work with fermions in the future.

However, it became apparent that the advantages of working with 39K might well out-

weigh the inherent difficulties. Our overall goal is to study universal phenomena in

many-body physics; this should not depend on the particular properties of the atom we

are using, only its more generic properties. The beauty of working with ultracold gases

to this end is that we have the tools to control the temperature, spin, confinement,

motion, rotation and other such properties of the system. The final ‘knob’ we would

like control of is the inter-atomic interaction strength. Remarkably we may play with

this too, via the phenomenon of Feshbach resonances. These allow us to control the

scattering length of our atoms by simply applying a uniform magnetic field of appropri-

ate strength. However, their accessibility and usefulness (for our purposes) vary widely

between species.

The behaviour of the scattering length with magnetic field strength near a Fesh-
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1.2 Ideal Bose gas

Atom B∞ (G) ∆ (G) abg/a0 abg/(a0∆) (G−1) Ref.

7Li 736.8 -192.3 -25 0.13 Pollack et al., 2009 [10]

23Na 1195 -1.4 62 -44.3 Stenger et al., 1999 [11]

39K 402.5 -52 -29 0.56 Zaccanti et al., 2009 [12]

41K 51.4 -0.3 60 -200 Kishimoto et al., 2009 [13]

85Rb 155.04 10.7 -443 -41.4 Claussen et al., 2003 [14]

87Rb 1007.4 0.21 100 476 Dürr et al., 2004 [15]

133Cs -11.7 28.7 1720 59.9 Lange et al., 2009 [16]

Table 1.1: Characteristic parameters of selected Feshbach resonances in stable bosonic alkali
atoms. These are experimentally verified resonances with the most promising properties for
control of interaction strength for each respective atomic species. The broad resonances in 7Li
and 39K stand out as prime candidates. References are to the most recent known experimental
measurements. The data was collated in Ref. [17], some values being the result of unpublished
work.

bach resonance may usually be characterised by just three parameters1 (see §1.5.2): a

resonance centre B∞, the corresponding resonance width ∆ and background scattering

length abg. Near the resonance the scattering length diverges, while there is what is

known as a zero-crossing (where the scattering length goes to zero) for a field value

B0 = B∞ + ∆. Near this zero-crossing the variation in scattering length with field

is roughly linear, with gradient abg/∆. Thus prime resonances for good experimental

control of the scattering length have a small magnitude for this figure of merit. As can

be seen in Table 1.1, the quoted resonances for 7Li and 39K have gradients at the zero-

crossing about two orders of magnitude smaller than any of the others. By this criterion

alone 7Li would appear to have the best experimental control, and indeed is being used

with great success [10]. All things considered, there isn’t much to choose between these

two species, and with the more convenient lower-field resonance of 39K (and with our

experiment already shaping up to cater for cooling rubidium and potassium) it was the

obvious choice to concentrate our efforts on.

1.2 Ideal Bose gas

Bose-Einstein condensation is fundamentally different to all other phase transitions be-

tween different states of matter in that it occurs even in the absence of interactions

between particles, relying on purely statistical processes2. In a normal classical gas the

thermal energy kBT is far greater than the level spacings of the system, and the be-

haviour of the gas can be described with standard Maxwell-Boltzmann statistics, where

the bosonic or fermionic nature of the particles is insignificant. However, Einstein ob-

1This is valid as long as there are no other resonances nearby.
2Although thermal equilibrium is assumed, generally requiring interactions between particles.
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1.2 Ideal Bose gas

served in 1925 [1] that this description is inadequate for thermal energies for which

the spreading of the atomic wavefunction is comparable to the inter-particle separa-

tion, where the indistinguishable nature of the identical particles becomes important.

Einstein generalised Bose’s work on the statistics of (massless) photons [2] to consider

massive particles, describing what is now referred to as Bose-Einstein statistics.

The essential feature is that the mean occupation of single-particle states i for non-

interacting bosons in thermal equilibrium is given by the Bose-Einstein distribution

function

f(εi) =
1

e(εi−µ)/kBT − 1
, (1.1)

where εi is the energy of the single-particle state i and µ is the chemical potential,

which is set by particle number conservation. From this the total number of particles

is easily evaluated as

N =
∑
i

f(εi) . (1.2)

Equation (1.1) also provides the important constraint µ < ε0 for the ideal Bose gas,

where ε0 is the energy of the lowest single-particle state. As µ→ ε0 the occupation of

the ground state

N0 ≡ f(ε0) =
1

e(ε0−µ)/kBT − 1
(1.3)

increases and becomes comparable to N . In fact, this is the mechanism behind Bose-

Einstein condensation, occurring under specific conditions as discussed below.

1.2.1 The semi-classical approximation

We can treat (1.3) as a special case such that the total number of atoms is given by

N = N0 +NT (1.4)

where NT is the number of atoms in excited states (i.e. the number of thermal atoms)

given by

NT =
∑
i 6=0

f(εi) . (1.5)

In general it is not straightforward to evaluate such summations. However, as long as

the thermal energy kBT is much larger than the energy level spacing of the system we

may convert the sum into an integral by replacing the discrete εi with the continuous

variable ε(r,p) dependent on position r and momentum p, which corresponds to the

classical energy associated with the single-particle Hamiltonian for the system. This

does not take into account the contribution from i = 0. In three dimensions there is

on average one quantum state per volume of phase space (2π~)3. Integrating over all

phase space and dividing by this factor thus yields the total number of occupied excited

5



1.2 Ideal Bose gas

states,

NT =
1

(2π~)3

∫∫
1

e(ε(r,p)−µ)/kBT − 1
dpdr . (1.6)

This transformation to an integral is known as the semi-classical approximation. For a

gas in a box, ε(r,p) is simply p2/2m and we may separate the integral
∫

dr = V , where

V is the volume of the containing box. We may then use the substitution x = p2/2mkBT

to calculate the number density as a function of µ

nT ≡
NT

V
=

1

(2π~)3

∫ ∞
0

1

e(p2/2m−µ)/kBT − 1
4πp2dp =

1

λ3
T

g3/2(eµ/kBT ) , (1.7)

where

λT =

√
2π~2

mkBT
(1.8)

is the thermal de Broglie wavelength. g3/2(z) is a special case of the set of polyloga-

rithmic functions

gs(z) =
1

Γ(s)

∫ ∞
0

xs−1

z−1ex − 1
dx =

∞∑
k=1

zk

ks
(1.9)

where the Gamma function is defined as

Γ(s) =

∫ ∞
0

xs−1e−xdx , (1.10)

giving Γ(3/2) =
√
π/2. The value of nT obtained from (1.7) increases with increasing

µ. However, there is a fundamental limit from our constraint µ < ε0 = 0 for a free

particle in a box. This means that as N increases the available excited states become

saturated at a critical density

nc ≡
Nc

V
=
ζ(3/2)

λ3
T

≈ 2.612

λ3
T

, (1.11)

where ζ(s) = gs(1) is the Reimann zeta function, with all further atoms forced to occupy

the ground state, forming a Bose-Einstein condensate. In this ideal case the number

of thermal particles is fixed at NT = Nc for N > Nc. Note that this phenomenon does

indeed occur at a point where interparticle separation is comparable to the spread of

the atomic wavefunction with n
−1/3
c ∼ λT . The critical value of the phase space density

nλ3
T of 2.612 is a key prediction of Einstein’s theory and provided a useful target for

the experimental pioneers aiming to realise these extreme conditions in the laboratory.

We may reformulate (1.11) using (1.8) to give the corresponding result for the critical

temperature,

kBTc =
2π~2

m

(
n

ζ(3/2)

)2/3

≈ 3.313
~2n2/3

m
. (1.12)
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Figure 1.2: Density distribution (solid line) of a harmonically trapped Bose gas at the critical
point in terms of phase space density. The peak density is equal to the critical phase space
density for a uniform Bose gas. The dashed line shows the form of the harmonic trapping
potential.

1.2.2 Ideal Bose gas in a harmonic trap

Most experimental setups produce ultracold atomic samples that are trapped in a

harmonic potential. We may describe such a system by now setting

ε(r,p) =
p2

2m
+ V (r) , (1.13)

where

V (r) =
1

2
m
(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)

(1.14)

describes a generic harmonic potential with trapping frequencies ωk. Using (1.13)

with (1.6) and performing only the integral over momentum space gives us the spatial

distribution of thermal atoms in the trap as

nT (r) =
1

λ3
T

g3/2

[
e(µ−V (r))/kBT

]
. (1.15)

Once more the upper bound for our thermal atom number is acquired in the limit of

µ→ ε0 ≈ 01. This gives a critical density distribution (as displayed in Fig. 1.2)

nc(r) =
1

λ3
T

g3/2

{
exp

[
−1

2

(
x2

R2
T x

+
y2

R2
T y

+
z2

R2
T z

)]}
, (1.16)

where the characteristic widths of the distribution RT k =
√
kBT/mω2

k are known as

the thermal radii. We immediately recover the critical density given in (1.11) at the

centre of the trap by setting x = y = z = 0. Performing instead the r integral of

(1.6) would give a similar expression for nT (p). To obtain the critical number we must

integrate (1.16) over r, finding

1This ignores the zero point energy of the potential.
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1.3 The Bose-Einstein condensate

Nc = ζ(3)

(
kBT

~ω̄

)3

≈ 1.202

(
kBT

~ω̄

)3

, (1.17)

where the geometric mean trapping frequency ω̄ = (ωxωyωz)
1/3 is employed. Once

again above this critical atom number additional atoms must occupy the ground state

as a Bose-Einstein condensate. Alternatively we can describe the critical point in terms

of a critical temperature Tc for a fixed atom number given by

kBTc = ~ω̄
(
N

ζ(3)

)1/3

≈ 0.940 ~ω̄N1/3 . (1.18)

The above expression may be used to more closely scrutinise the applicability of the

semi-classical approximation. The level spacings of a quantum harmonic oscillator being

~ωk, the condition kBT � ~ωk must hold. It is apparent then from (1.18) that the

semi-classical approximation is only compatible with the quantum degenerate regime

if N1/3 � 1.

1.3 The Bose-Einstein condensate

The preceding section gives us an adequate description of the distribution of the thermal

atoms of an ideal gas below the critical temperature, but we would also like to know

about the distribution of the condensate. In order to calculate this we may invoke

the Bogoliubov approximation [18] to describe the wavefunction of the condensate as

Ψ0 =
√
N0ϕ0, where ϕ0 is the single-particle ground state wavefunction of the system,

obeying

N0 =

∫
|Ψ0(r)|2dr . (1.19)

Ψ0 is also known as the order parameter, being zero above the critical temperature and

finite below it1.

1.3.1 Ideal condensate

For an ideal Bose gas, Ψ0 solves the familiar Schrödinger equation(
− ~2

2m
∇2 + V (r)

)
Ψ0(r) = µΨ0(r) , (1.20)

where the chemical potential µ replaces the usual energy term as we keep the number

of particles fixed. It is easy to check that for the harmonic potential given in (1.14)

1The Bogoliubov treatment is justified for a large number of particles occupying the same state,
where the non-commutativity of field operators is not important and a classical function may be used
instead.
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Figure 1.3: Density distribution in terms of phase space density for a non-interacting Bose
gas in a harmonic trap, where Nc = 106 and N0 = 104. The solid line gives the full distribution
while the dashed line shows that of the thermal gas only. The x-axis is in units of thermal
radii while the y-axis is given in terms of phase space density. The sharp peak in density is a
signature of the onset of condensation in a harmonically trapped Bose gas. It is clearly visible
despite the condensed fraction N0/N of only ∼ 1%.

this is solved by the Gaussian wavefunction

Ψ0(r) =

√
N0

π3/4ā
3/2
ho

exp

[
−1

2

(
x2

a2
hox

+
y2

a2
ho y

+
z2

a2
ho z

)]
, (1.21)

where aho k =
√
~/mωk is the oscillator length along the k axis and āho is the geometric

mean (ahoxaho yaho z)
1/3. This is not surprising, being simply

√
N0 times the lowest

single-particle state wavefunction for a harmonic potential. This directly gives the

ideal condensate density distribution

n0(r) = |Ψ0(r)|2 =
N0

π3/2ā3
ho

exp

[
−

(
x2

a2
hox

+
y2

a2
ho y

+
z2

a2
ho z

)]
. (1.22)

Note that the characteristic length scales aho and RT , for the ideal condensate and

the thermal distribution respectively, differ by a factor [ζ(3)/Nc]
1/6 ≈ 0.1 for Nc =

106. This means that in a harmonic trap a sharp peak in the spacial distribution is a

signature of the onset of Bose-Einstein condensation, as shown in Fig. 1.3 for Nc = 106

and N0 = 104.

1.3.2 Condensate with repulsive interactions

The introduction of interactions complicates matters, but we are fortunate to be con-

sidering dilute systems in which the inter-particle separation is much larger than the

range of the interatomic forces. We may generally then just consider the effects of pairs
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1.3 The Bose-Einstein condensate

of particles interacting, and we may also use the asymptotic expression for the wave-

function for the relative motion of the atoms which is fixed by the scattering amplitude.

In the ultracold regime the particles have very low momenta such that the scattering

amplitude is fully determined by the s-wave scattering length a (this is discussed in a

little more detail in §1.5). We may also assume that the variation of Ψ0(r) is small over

the range of the inter-atomic force (i.e. for a harmonic trap aho/a� 1), such that the

effects of interactions are fully captured by introducing a self-interaction term g|Ψ0(r)|2

to the Schrödinger equation, where the interaction coupling constant is defined as

g =
4π~2a

m
. (1.23)

The addition of this non-linear term results in the time-independent Gross-Pitaevskii

equation, (
− ~2

2m
∇2 + V (r) + g|Ψ0(r)|2

)
Ψ0(r) = µΨ0(r) . (1.24)

This important equation is a key tool for investigating the behaviour of nonuniform

ultracold Bose gases. A thorough derivation can be found in [19]. This provides a

starting point to find the condensate density in a self-consistent manner.

A remarkable further simplification may yet be made. If we take as a starting

point the wave function (1.21) for g → 0 we can compare the expectation values of

the interaction and kinetic energy terms of (1.24). Assuming no extreme anisotropy of

the trapping potential, the ratio of the two terms is ' N0a/āho. This means that the

interaction term swamps the kinetic energy provided the condition

N0
a

āho
� 1 (1.25)

holds. Once more under standard experimental conditions this criterion is met, and we

may use the so-called Thomas-Fermi approximation to drop the kinetic energy term of

(1.24). This may then be simply arranged in the form

n0(r) = |Ψ0(r)|2 =
µ− V (r)

g
(1.26)

up to the point in the trap where µ = V (r), while the trivial solution |Ψ0(r)|2 = 0

holds otherwise. For a uniform system this gives the result µ = gn0(0), being positive

for a > 0 below the critical temperature, in contradistinction to the ideal case. We can

also see that the condensate density is drastically altered from the ideal case, reflecting

the shape of the confining potential. Going back to our harmonic potential, the density

may be written in the form

n0(r) =
µ

g

(
1− x2

R2
x

− y2

R2
y

− z2

R2
z

)
, (1.27)
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Figure 1.4: In-trap density distributions for pure interacting (a = 135 a0, solid line) and ideal
(dashed line) 39K condensates of 400 000 atoms with ω̄ = 2π × 70 Hz. Densities are normalised
to the central density of the ideal condensate, approximately equivalent to 1016 cm−3. Note
that the central density in the interacting case is only ∼0.8% that of the ideal case, so the
displayed distribution has been multiplied by a factor of 50.

where Rk =
√

2µ/mω2
k is the Thomas-Fermi radius at which the condensate density

drops to zero along the k axis. The relation of N0 and µ may be found by integrating

(1.27) over the ellipsoid with semi-axes Rk. Doing so gives

N0 =
8π

15

µ

g
R̄3 , (1.28)

R̄ representing the geometric mean (RxRyRz)
1/3. This may be rearranged to give the

Thomas-Fermi chemical potential in the form

µ =
1

2
~ω̄
(

15N0a

āho

)2/5

, (1.29)

which we shall make good use of in Chapter 4. We can calculate n0(0) by dividing

(1.29) by g, while the Thomas-Fermi radius is given in terms of N0 as

R = aho

(
15N0a

aho

)1/5

, (1.30)

showing how significantly the condensate spreads out in comparison to the ideal case,

where the size is independent of N0. Fig. 1.4 compares the in-trap distributions for pure

condensates of 39K in the ideal case (a = 0) and when a = 135 a0. Interactions suppress

the central density by a factor of ≈ 125 with some typical experimental parameters.
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1.4 Properties of alkali atoms

1.4 Properties of alkali atoms

The production of BECs is only possible due to the interactions of atoms with electro-

magnetic fields, so it is best to have an idea of the properties of the atoms themselves

before getting into the practical applications of such interactions.

1.4.1 Hyperfine structure

The electronic ground state configurations of the alkali atoms (group IA of the periodic

table) are characterised by a single electron in their outer shell, for example:

K 1s22s22p63s23p6 4s,

Rb 1s22s22p63s23p63d104s24p6 5s

for potassium and rubidium. It is enough simply to refer to the outer electron to

describe electronic states for our purposes as it is the only one that will be affected

on the energy scales used (the inner electrons are much more tightly bound). Thus

the potassium and rubidium ground states are referred to as 42S1/2 and 52S1/2 respec-

tively. Here the superscript 2 refers to the number of spin components of the angular

momentum S (equal to 2S + 1), the ‘S’ refers to the orbital angular momentum L (S,

P, D. . . for 0, 1, 2. . . ) and the subscript 1/2 refers to total electron angular momentum

J .

We concern ourselves with this ground state and the lowest excited nP states. The

interaction between the spin and orbital components of the angular momentum (the

origins of which are discussed in [20] as well as many other texts) create a fine splitting

of the excited state into a doublet with J = 1/2 and 3/2. The two frequencies associated

with the energy gap between the ground state and these two excited states are referred

to respectively as the D1 and D2 lines.

Each of these states is split further by the interaction between the nuclear spin I

and J , described by the Hamiltonian

Ĥhf = AhfI · J , (1.31)

forming the hyperfine structure. Assuming J ≤ I, this produces 2J+1 levels labelled by

the total atomic angular momentum F , taking the values F = I−J , I−J+1, . . ., I+J .

For our experiments we shall mainly be concerned with the D2 line and the subsequent

hyperfine splitting, which is shown in Fig. 1.5 for 39K and 87Rb. Conveniently, both

species have I = 3/2, allowing us to consider just one configuration of S and I.

1.4.2 Interactions with magnetic fields

The degeneracy of the hyperfine levels may be lifted by applying a magnetic field.

Each is split into 2F + 1 sublevels, giving a total of (2J + 1)(2I + 1) for each fine
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Figure 1: Caption
Figure 1.5: Hyperfine structure of the 39K and 87Rb D2 lines. Both species have I = 3/2
resulting in similar structures, with the frequency splitting between hyperfine levels given in
MHz. It should be noted however that the scale of the entire 87Rb structure is scaled down
by a factor of ten with respect to that for 39K, while the scale of the lower hyperfine splitting
for both species is scaled down by a factor of ten with respect to that of their upper scales.
Potassium data is taken from [21, 22], while the rubidium data is collated in [23].
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structure configuration. For low magnetic fields (where the interaction with the external

field is weaker than the hyperfine interaction) each sublevel may be labelled by the

good quantum numbers F and its projection along the quantisation axis mF . In the

strong field regime however we must use instead the quantum numbers J , I and their

projections mJ and mI . Using m = mF for low fields and m = mJ + mI for high

fields provides a consistent parameter to label states over the full range of magnetic

field strength.

It is possible to find expressions to describe the behaviour of the hyperfine sublevels

in the weak- and strong-field regimes by considering the magnetic interaction as a

perturbation of the hyperfine interaction eigenstates and vice versa, but to examine the

behaviour in the intermediate region one must diagonalise the full hyperfine-magnetic

Hamiltonian

Ĥ = Ĥhf + ĤB = AhfI · J − µJ ·B − µI ·B , (1.32)

where µJ = −gJµBJ/~ and µI = −gIµBI/~ are the angular momentum and nuclear

magnetic moments respectively, where gJ and gI are Landé g-factors and µB is the

Bohr magneton. For J = 1/2 , this results in the Breit-Rabi formula [24],

EBR(F± = I ± 1/2,m) = − ∆Ehf

2(2I + 1)
− gIµBmB

± 1

2

√
∆E2

hf +
4m

2I + 1
(gJ − gI)µBB∆Ehf + (gJ − gI)2µ2

B ,

(1.33)

where ∆Ehf is the hyperfine splitting for B = 0. Turning to dimensionless variables

B̃ =
B

B0
= B

(gJ − gI)µB
∆Ehf

and ε(F,m) =
EBR(F,m)

∆Ehf
(1.34)

this may be written in the dimensionless form

ε(F±,m) = − 1

2(2I + 1)
− m

gJ/gI − 1
B̃ ± 1

2

√
1 +

4m

2I + 1
B̃ + B̃2 . (1.35)

This is plotted in Fig. 1.6 for I = 3/2, representing the 39K and 87Rb electronic ground

states. In the weak-field (B̃ � 1) limit, and neglecting gI ∼ gJ × 10−3, we recover the

familiar Zeeman effect,

EZ = EBR(F,mF , B)− EBR(F,mF , B = 0) = µFB , (1.36)

where µF = gFµBmF . The factor gF arises from the projection of J onto F , which

for J = 1/2 is simply given by

gF± = ± 1

2I + 1
gJ . (1.37)

Magnetic trapping of atoms therefore depends on creating an inhomogeneous mag-

netic field such that a potential minimum is created. Given that Maxwell’s equations
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Figure 1.6: Energies of the magnetic sublevels of the n2S1/2 fine structure ground state of
an alkali atom with nuclear spin I = 3/2. In the low-field regime the states are grouped by F
while in the high-field regime they are grouped by mJ . Note that B0 is 2438.8 G for 87Rb while
it is 164.7 G for 39K.

prohibit the formation of a magnetic maximum in space, only the atoms in states where

magnetic potential increases with field strength are magnetically trappable, i.e. those

for which gFmF is positive. Note that magnetic potentials are proportional to |B|, as

the direction of the field defines the precession axis of the system, such that there will

always be a potential minimum where B = 0 .

1.4.3 Interactions with light

The development of techniques to cool and trap atoms with laser light was the key to

opening up the world of ultracold atomic gases, being recognised with the bestowal of

the 1997 Nobel Prize for Physics on Steven Chu, Claude Cohen-Tannoudji and William

Phillips. That light has an effect on an atom stems from the fact that a dipole d may

be induced in an atom in the presence of an external electromagnetic radiation field E,

in general given by the expectation value

〈Ψ|d |Ψ〉 = αE , (1.38)

where α is the complex polarisability of the atom. The effects of light on atoms can be

split into two categories: reactive effects and absorptive effects, the former being more
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1.4 Properties of alkali atoms

important when the frequency of the external field is far from resonance, the latter

when the frequency is near resonance. These two effects are directly related to the real

and imaginary parts of α. Much information may therefore be garnered from finding α,

for which we need to know the electronic wavefunction Ψ. This may be approximated

by considering the interaction as a perturbation of the isolated atom system, with the

total Hamiltonian

Ĥ = Ĥ0 + Ĥdip , (1.39)

where Ĥ0 is the Hamiltonian describing the atom in the absence of the field, and the

Hamiltonian representing the perturbing dipole interaction is given by

Ĥdip = −d ·E , (1.40)

noting that d = −er, where we are considering the coordinate system where the atomic

nucleus is located at r = 0. This shows that the dipole moment has odd parity which

is used in the following discussion.

As is standard in perturbation theory we set about finding the solution to the

time-dependent Schrödinger equation

ĤΨ(r, t) = i~
d

dt
Ψ(r, t) (1.41)

by considering the wavefunction to be a superposition of the eigenstates of the unper-

turbed system:

Ψ(r, t) = ρ1(t)Ψ1(r, t) + ρ2(t)Ψ2(r, t) , (1.42)

with

Ψi(r, t) = e−
i
~Eitϕi(r) . (1.43)

Here we have simplified the full description to a two-level system (lower state 1, upper

state 2) where the time dependent coefficients ρi(t) are normalised such that the sum

of the state populations |ρ1|2 + |ρ2|2 = 1. The quantities Ei are the energy eigenvalues

of the unperturbed Hamiltonian:

Ĥ0Ψi = EiΨi . (1.44)

Using (1.41), (1.42), (1.43) and (1.44) we obtain

Ĥdip(ρ1Ψ1 + ρ2Ψ2) = i~(Ψ1ρ̇1 + Ψ2ρ̇2) , (1.45)

where ρ̇i ≡ dρi/dt. If we assume that the applied radiation field oscillates harmonically

in time with frequency ω/2π we can write

E(t) = E0 cos(ωt) , (1.46)

16



1.4 Properties of alkali atoms

where it is also assumed that any spatial variation of the field amplitude is insignificant

over the length scale of the atom. To eliminate the spatial dependence of (1.45) we can

multiply through by the complex conjugate wavefunction Ψ∗i and integrate over space.

Doing this for both i = 1 and i = 2 yields

ρ̇1(t) =
i

~
ρ2(t)d12 ·E0 cos(ωt)e−

i
~ (E2−E1)t (1.47)

ρ̇2(t) =
i

~
ρ1(t)d21 ·E0 cos(ωt)e

i
~ (E2−E1)t . (1.48)

Here we have introduced the dipole matrix elements

dij = 〈i|d |j〉 =

∫
ϕ∗i (r)d(r)ϕj(r)dV (1.49)

coupling the two states. For convenience we may choose the phases of the wavefunctions

such that the dipole matrix elements are real. We can then define the Rabi frequency

Ω (a measure of the strength of the coupling between the light and the applied field)

as

Ω =
|d12 ·E0|

~
=
|d21 ·E0|

~
. (1.50)

This is not quite the full story as we have not included the effect of spontaneous

emission. This is easily rectified by introducing a damping term (Γω/2)ρ2(t). Also

defining the resonant transition frequency ω0 = (E2−E1)/~ we may rewrite (1.47) and

(1.48) as

ρ̇1(t)− Γω
2
ρ2(t) = iρ2(t)Ω cos(ωt)e−iω0t (1.51)

ρ̇2(t) +
Γω
2
ρ2(t) = iρ1(t)Ω cos(ωt)eiω0t . (1.52)

Γω = (ω2/ω2
0)Γ represents the off-resonant damping coefficient [25] which reduces to

Γ close to resonance (or indeed in the absence of an applied field). Note that setting

E0 = 0 (i.e. Ω = 0) in (1.52) gives the result that, in the absence of external radiation,

the upper state population decays at a rate Γ, and

|ρ2(t)2| = |ρ2(0)2|e−Γt , (1.53)

as expected. However, we are more interested in the steady-state solutions in the

presence of an external field, i.e. the case where the state populations are constant:

d

dt
|ρi(t)2| = 0 . (1.54)

For near resonant light we may make the rotating-wave approximation, δ = ω−ω0 �
ω + ω0, such that in the steady-state situation the time-dependence of ρ1ρ

∗
2 is simply
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1.4 Properties of alkali atoms

given by the factor exp(iδt). With these conditions, and using

d

dt
(ρiρ

∗
j ) = ρiρ̇

∗
j + ρ̇iρ

∗
j , (1.55)

we may use (1.51) and (1.52) to obtain the equations

Ωe+iδtρ2ρ
∗
1 − Ωe−iδtρ1ρ

∗
2 − 2iΓρ2ρ

∗
2 = 0 (1.56)

Ω(ρ1ρ
∗
1 − ρ2ρ

∗
2) + (2δ − iΓ)e−iδtρ1ρ

∗
2 = 0 . (1.57)

We may solve these directly to obtain, for example,

ρ2ρ
∗
2 = |ρ2|2 =

Ω2

Γ2 + 4δ2 + 2Ω2
(1.58)

for the upper state population, which reaches a maximum of 1/2 as Ω→∞. We may

now find a value for α by considering the expectation value of the dipole moment,

〈Ψ|d |Ψ〉 =

∫
Ψ∗dΨ dV = ρ∗1ρ2d12e

−iω0t + ρ1ρ
∗
2d21e

iω0t = αE0 cos(ωt) . (1.59)

In the near-resonance case that we have been discussing we may use the steady-state

solutions obtained from the above equations to find

αnear =
d12d21

~
−δ + iΓ/2

Γ2/4 + δ2 + Ω2/2
. (1.60)

In the far-detuned case we can no longer make the rotating-wave approximation, but

instead we may assume Γ2 � δ2 and that the coupling Ω is weak. Similar arguments

eventually lead to an expression for the polarisability in this regime,

αfar =
d12d21

~
2ω0

[
ω2

0 − ω2 − i(ω3/ω2
0)Γ
]

(ω2
0 − ω2)2

. (1.61)

The reactive dipole force may be found from

Fdip = −∇Udip (1.62)

where

Udip = −1

2
〈d ·E〉t = − 1

2ε0c
Re(α)I(r) . (1.63)

〈. . .〉t represents the time average and the factor of 1/2 appears as the dipole is induced

rather than permanent. We have also used I(r) = (1/2)ε0c|E0(r)|2 and the fact that

the time-averaged value of cos2(ωt) is 1/2. The r dependence is now on the macroscopic

scale, not the atomic scale, and we see a force that is proportional to the gradient of

the intensity of the external field. As we are taking the real part of the polarisability

we can see that this force is vanishing in the near-resonant limit.
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1.4 Properties of alkali atoms

The absorptive scattering force is found from

Fsc = ~kΓsc , (1.64)

where k is the wave-vector of a photon of the laser field (so its direction is that of

the beam propagation), and Γsc is the scattering rate of the atom. The force is then

considered to arise from the atom receiving a kick of momentum ~k each time it absorbs

a photon, while we consider the momentum kicks from re-emission to average to zero.

This picture will be considered later in §2.3 when discussing the limits of laser cooling

methods. Γsc can be found by considering the power absorbed by an atom and dividing

by the energy attributed to an incident photon, ~ω:

Γsc =
Pabs

~ω
=

1

~ω
〈ḋ ·E〉t =

1

~ε0c
Im(α)I(r) . (1.65)

Near-resonant light

Taking all of the above into account we can introduce the saturation intensity Isat where

I

Isat
=

2Ω2

Γ2
(1.66)

to finally obtain the scattering force as

Fsc = ~k
Γ

2

I/Isat

1 + (2δ/Γ)2 + I/Isat
. (1.67)

This force is applied in the early stages of the experiment to trap and cool atoms as is

discussed in §2.3. Note that Γsc could also have been found by multiplying the value of

|ρ2|2 given in (1.58) by Γ, being simply the steady-state population of the upper state

multiplied by the decay rate from this state.

Far-detuned light

By using the quantum mechanical result for the spontaneous decay rate of the upper

state (see e.g. [26, 27])

Γ =
ω3

0

3πε0~c3
|〈1|d |2〉|2 (1.68)

with (1.61) and (1.63), we may obtain an expression for the dipole potential

Udip(r) = −3πc2

2ω3
0

(
Γ

ω0 − ω
+

Γ

ω0 + ω

)
I(r) (1.69)

and using (1.65) the corresponding scattering rate

Γsc(r) =
3πc2

2~ω3
0

(
ω

ω0

)3( Γ

ω0 − ω
+

Γ

ω0 + ω

)2

I(r) . (1.70)
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1.5 Collisions between ultra-cold atoms

The dipole force is stronger than the scattering force in the far-detuned regime, but due

to the typical temperatures of atoms in traps formed by dipole potentials it is useful

to know the scattering rate of the atoms, as only a few scattering events can cause

losses from the trap. Assuming for a moment that the detuning is small enough that

1/δ � 1/ω0 , we can see that Udip is roughly proportional to I/δ while the scattering

rate is roughly proportional to I/δ2. It is therefore generally preferable to detune

the laser beam far from resonance while compensating for the potential strength by

increasing the power in the laser as far as possible, for greater lifetimes and lower

heating rates in a dipole potential. Also note from (1.69) that if ω < ω0 (red-detuning)

a potential minimum can be formed by an intensity maximum, while for ω < ω0 (blue-

detuning) a potential minimum is formed by an intensity minimum.

1.5 Collisions between ultra-cold atoms

Collisions play a central role in both the formation and behaviour of ultra-cold atomic

gases. Elastic collisions enable thermalisation of a cloud of atoms, allowing cooling via

evaporation in the final step towards quantum degeneracy in many experiments (§2.7),

while inelastic collisions limit the effectiveness of such a technique. The modification

of the shape of the BEC due to collisional interactions has already been discussed in

§1.3.2, while inelastic processes ultimately limit the maximum phase-space density it is

possible to achieve in a cooled gas.

1.5.1 Scattering length

In general, collision theory is a complex topic, but the fact that we are dealing with

the ultra-cold regime greatly simplifies the description. For now we shall consider the

most pertinent case of elastic collisions between just two particles. The easiest way to

describe such a system is to ignore the centre-of-mass energy and to consider just the

relative position and momentum operators r̂ and p̂:

r̂ = r̂1 − r̂2 , p̂ = (p̂1 − p̂2)/2 , (1.71)

where the subscripts 1 and 2 refer to the individual atoms, using the notation of [28].

The Hamiltonian for the relative motion of the two particles then naturally follows as(
p̂2

2mr
+ V (r)

)
ψ(k, r) = Ekψ(k, r) , (1.72)

where V (r) represents the inter-atomic potential, k is the relative wavevector and mr

is the reduced mass, equal to m/2 in the case of atoms of the same species. We assume

that V (r)→ 0 as |r| = r →∞, such that the eigenstates of the system have energy

Ek =
~2k2

2mr
. (1.73)
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1.5 Collisions between ultra-cold atoms

If we assume that the potential is spherically symmetric, the solution to (1.72) in the

r → ∞ limit takes the asymptotic form of a superposition of an incident wave and a

scattered wave, given by

ψ = eikz + f(θ, k)
eikr

r
, (1.74)

where the z direction has been chosen for the propagation of the incident wave. Here

f(θ, k) is the scattering amplitude which depends on the angle θ between the relative

incident and scattered wave-vectors. Due to the axial symmetry with respect to z, the

general form of the wavefunction can be expanded as ‘partial waves’ in terms of the

Legendre Polynomials Pl(cos θ), taking the form

ψ =

∞∑
l=0

AlPl(cos θ)Rkl(r) . (1.75)

Using the usual quantum mechanical result for motion in a centrally symmetric field

(see e.g. [26]), the radial wavefunction must satisfy the equation

d2(rRkl(r))

dr2
+

(
k2 − l(l + 1)

r2
− 2mrV (r)

~2

)
rRkl(r) = 0 . (1.76)

For k → 0 , the relative particle energy will be far lower than the barrier formed by

the addition of the centrifugal potential ~2l(l + 1)/2mrr
2 , such that only the partial

wave for l = 0 will ‘see’ the potential V (r), and all other waves will not contribute to

the scattering behaviour1. The scattering amplitude for l = 0 is independent of θ, and

so is referred to as the s-wave scattering length, which is written as a. We therefore

expect in the limit r →∞ and k → 0 to find the solution

ψ0 = 1 +
a

r
. (1.77)

This is simply the result for a hard-core potential of radius a, giving a means of in-

terpreting the scattering length. It can be shown [28, 29] that in the low k limit a is

independent of k, so low energy scattering is completely determined by a. This applies

to the total scattering cross-section σ, which for identical bosons is given by

σ = 8πa2 . (1.78)

The extra factor of two over the usual expression results from the symmetry of the

wavefunction under the exchange of the two sets of particle coordinates for identical

bosons. The scattering length also gives the condition for a gas to be considered dilute,

being the regime where an1/3 � 1. The quantity an1/3 is therefore referred to as the

diluteness parameter.

As the behaviour of the atoms depends only on the scattering length, we can choose

1Technically this depends on the form of r as r → ∞. When this is given by the Van de Waals
potential ∝ r−6 it is a good approximation. See [26] for details.
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1.5 Collisions between ultra-cold atoms

an effective pseudopotential to model the system as long as the scattering length a is

retained. The simplest model describing interactions between two particles uses the

contact potential

V (r) = gδ(r) , (1.79)

where δ(r) is the Dirac delta function centred at r = 0 . The proper way to treat the

contact interaction is discussed in [30], and it leads to a total s-wave elastic scattering

cross-section for polarised Bosons of [28]

σ(k) =
8πa2

1 + k2a2
, (1.80)

where the contact energy g is found to be the interaction coupling constant given in

(1.23). This gives two very different results in the small and large ak limits:

σ(k) '

{
8πa2 for ka� 1

8π/k2 for ka� 1 .
(1.81)

The first case is the result (1.78) for identical bosons at ultra-low energy, while the

second case reveals the upper limit to the cross-section for s-wave scattering. This is

known as the unitarity limit, the regime in which the inter-particle spacing is consider-

ably greater than the range of the two-body interaction, but considerably smaller than

the magnitude of the scattering length. In this scenario both the form of the inter-

atomic potential and the precise scattering length cease to matter when considering

few-body scattering. This leads to intriguing universal properties, such as the shal-

low three-body bound ‘Efimov states’ in the vicinity of a Feshbach resonance [12, 31].

This limit can be reached in ultra-cold atoms only when the scattering length can take

divergent values. For the most-part the former cross-section is appropriate.

Real potentials (unlike hard-core potentials) can result in either positive or negative

a . Calculation of the scattering length requires a precise knowledge of the shape of

the interaction potential, being very sensitive to small alterations, in particular when

the energy of a quasi-bound state is closely matched to the potential depth U0. This is

illustrated in Fig. 1.7, where the quantity rR0(r) has been plotted for three different

scenarios in the style of [32]. The interatomic interaction has been modelled using a

Lennard-Jones potential, which takes the form

V (r) = −C6r
−6 + C12r

−12 (1.82)

where C6 and C12 are positive. Fig. 1.7 a shows a standard scenario where there is

no near-threshold bound state, producing a moderate positive scattering length. If the

trap depth is increased, a quasi-bound state with energy slightly greater than U0 causes

the wavefunction to start to ‘turn over’, and the extrapolation from the large r limit

designates an increasingly large negative scattering length, as shown in Fig. 1.7b. As
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1.5 Collisions between ultra-cold atoms
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Figure 1.7: Three different cases showing the effect that small changes in the interaction
potential can have on the resultant scattering length. The shape of the potential V (r) is in
black, while the radial wavefunction rR0(r) is in red. The well depth U0 is increased from
a to c. a In a simple case where there is no bound state near the dissociation energy limit
the scattering length takes a moderate positive value a as indicated. b As a bound state
approaches resonance the extrapolation of the wavefunction from the large r limit (dotted red
line) indicates an increasingly negative scattering length, diverging completely on resonance. c
Past the resonance position an extra node appears in the wavefunction and a positive scattering
length is once again found. These plots are in the style of those found in [32].

the bound state comes into resonance with U0 the scattering length diverges, until a

new bound state exists and an extra node appears in the wavefunction. Just past the

resonance the scattering length is therefore large and positive as, depicted in Fig. 1.7 c.

In practice, the shape of the interatomic potential is too complicated to directly

calculate, and experimental methods such as photoassociation spectroscopy [33], as

well as the observation of collisional dynamics in cold atom clouds (as studied in [6]

for 39K), are used to determine the scattering length. The scattering properties also

depend on the internal states of the atoms. The total electronic spin S in a binary

system can be either 0 (singlet) or 1 (triplet). Each case gives rise to a different

interatomic potential, resulting in different scattering lengths as and at respectively.

For collisions between maximally polarised atoms (i.e. for mF = F ), the single-channel

scattering is fully determined by the triplet potential, but the scattering length in other
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1.5 Collisions between ultra-cold atoms

states is a mixture of as and at due to the effects of the hyperfine interaction. However,

circumstances can conspire such that a second channel plays a large role in determining

the scattering properties, as now described.

1.5.2 Feshbach resonances

The case in which there are two scattering channels to consider is illustrated in Fig.

1.8. In black is the usual open channel, which for large separation corresponds to two

free atoms in a gas, while in red is the closed channel. In the ultra-cold regime the

atoms have little kinetic energy, and the total atomic energy tends to that of the open

channel potential at large separation. Atoms must therefore enter and exit in the open

channel as they do not have enough energy to separate in the closed channel. This

means there is no coupling at first order between the channels. However, if the closed

channel supports a bound state with an energy close to that of the atoms then an

extra scattering pathway is available, and the atoms may briefly scatter into the closed

channel before emerging in the open channel. In this case even weak coupling can lead

to strong mixing between the channels and a large change in the scattering length from

the pure single-channel scenario. This second-order coupling scenario is a familiar one,

and from perturbation theory we would expect a sum of contributions to the scattering

length of the form [29]

a ∼ C

E0 − Eres
, (1.83)

where E0 is the energy of the particles in the open channel and Eres is the energy in

the closed channel. For channels with different magnetic moments, as is the case for

the singlet and triplet potentials, the application of a magnetic field allows the relative

energy of the bound state to be tuned and brought to resonance. This is known as

a magnetically-tuneable Feshbach resonance, the benefits of which have already been

discussed in §1.1. To reflect the ability to tune with a magnetic field the total scattering

length near a particular Feshbach resonance is written in the form

a(B) = abg

(
1− ∆

B −B∞

)
, (1.84)

as introduced in [34], relating the scattering length in the presence of a magnetic field

of strength B to the off-resonant value abg via a resonance position B∞ and width ∆.

Note that this form holds as long as the resonance is well isolated from other resonances.

In this case the sum of the rest of the terms with the form of (1.83) will effectively be

constant, and their effect is absorbed into the value abg. The above equation is derived

in a considerably more rigorous fashion in [35] and [17], where it is shown that the

width parameter ∆ may be written

∆ =
m(2π~)3

4π~2abgµres
|〈ψres|Ĥex|ψ0〉|2 , (1.85)
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Figure 1.8: Basic two-channel model for a Feshbach resonance. The phenomenon occurs when
atoms incident upon one another in the open channel (black line) have an energy approaching
that of a bound state (red dashed line) in the closed channel (red line). Mixing between states
leads to a divergent scattering length when the bound state is resonant with the colliding atoms.
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Figure 1.9: Characteristic shape of a magnetically tuneable Feshbach resonance. Here the
case for the 39K resonance centred at 402.5 G is shown.

very suggestive of the perturbative origins of (1.84). Here Ĥex is the spin exchange

coupling Hamiltonian, ψ0 and ψres are the open and closed channel energy states re-

spectively, and µres is the difference between the magnetic moments of the molecular

bound state and the asymptotically separated non-interacting atoms.

The resonance profile (1.84) is shown in Fig. 1.9, using the parameters for the
39K resonance in the |F,mF 〉 = |1, 1〉 state listed in Table 1.1. Note that both the

background scattering length and the resonance width are negative in this case. The

zero-crossing point (where the scattering length goes to zero) is given by B0 = B∞+∆.

The existence of such resonances was experimentally confirmed in a BEC of sodium

atoms in 1998 [36]. Since then, access to such resonances has become an extremely

desirable tool for many experimentalists, while for the studies described in this thesis

it is essential.
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1.5 Collisions between ultra-cold atoms

1.5.3 Inelastic processes

We conclude this chapter with a brief discussion of inelastic collisions which are, for

the most part, undesirable but inevitable in ultra-cold atoms experiments. Most obvi-

ously, the imperfect vacuum of any experimental system leads to collisions between the

trapped gas and the background vapour. This vapour is at room temperature such that

the energies of the constituent particles are far greater than that of the trapped atoms.

This causes exponential decay of the number of trapped atoms, at a rate determined

by the background pressure in the vacuum chamber. This is usually the dominant loss

mechanism for clouds at low density.

At higher densities collisions between three particles become more frequent, increas-

ing the probability of three-body recombination, in which two particles form a molecule

while the third carries away the excess energy. This is often particularly undesirable,

as not only are all three atoms lost, but the coldest atoms are preferentially affected.

This is often the dominant loss mechanism for condensates due to their high densities.

The process has also been shown to scale as a4 [37], so can be greatly enhanced near a

Feshbach resonance.

Finally, dipole-dipole interactions between polarised atoms in a magnetic field can

lead to two-body spin relaxation [38], where the spin state of one or both of the colliding

atoms may be flipped. Due to the Zeeman splitting of spin states, this is energetically

favourable. When a cloud is magnetically confined this process can lead to atom loss

by the scattering of atoms into untrappable states. These three processes all contribute

to the overall heating and atom loss which act to oppose the desired increase in phase-

space density required for the formation of BECs, so the cooling mechanisms used must

work at a higher rate to overcome them.
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Chapter 2

Experimental setup

“ The only way out that I can think of is to ask the old gang to let their

attention wander for a bit - there are heaps of things they can be doing;

washing the car, solving the crossword puzzle, taking the dog for a run -

while I place the facts before the newcomers.”

– P. G. Wodehouse (Much Obliged, Jeeves)

The construction of a working experimental setup to reliably create and detect quantum

degenerate gases is no mean feat in itself, and typically still takes a new group a period

on the order of years to achieve. With the increasing global knowledge of these systems

start-up times are coming down, but the practical details are still inevitably numerous.

This chapter provides the particulars of the experimental methods and setup in some

detail, with the hope that it will prove useful to future students setting out on a similar

road to ours. For those better acquainted with cold atoms research it may be convenient

to use as a reference, with the more concise details of our experimental sequence to

produce 39K BECs being given in Chapter 3.

The system in which we have condensed and experimented with 39K is, in fact, the

second BEC machine in our lab. A trial single-chamber system was first created, the

main purpose of which was to familiarise ourselves with the basic experimental methods

required for the laser-cooling of atoms by creating a magneto-optical trap (see §2.3).

The setup exceeded our expectations though, and was pushed further to produce 87Rb

BECs of ∼ 105 atoms in an optically-plugged quadrupole trap [4]. Working with a

single chamber creates inherent limits on what is experimentally achievable (e.g. the

relatively short lifetimes of trapped atoms due to the pressure required for loading a

magneto-optical trap), but it is still hoped that this system will prove fruitful in the

future with the aid of planned improvements. To go into detail here would be to stray

a little too far from the main story, but a brief description of the trial system may be

found in Appendix B. The experimental details given in the remainder of this chapter

apply only to the second system.
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Figure 2.1: Simplified representation of our experimental setup showing a horizontal cross-
section through the vacuum system. On the right is the MOT cell, at a relatively high pressure
(∼ 10−9 mbar) for efficient collection of atoms, while on the left is the ‘science cell’ where
evaporative cooling occurs, and the pressure is ∼ 10−11 mbar. Once the requisite number of
atoms has been loaded into the MOT, they are transported to the science cell by the transport
coils.

2.1 Vacuum system

In contrast to our trial setup the main system has a two-chamber arrangement as

shown in Fig. 2.1. The essential stages in trapping and cooling atoms are a laser-

cooling stage in a magneto-optical trap (MOT), and an evaporative cooling stage. The

former requires a relatively high pressure to collect a large number of atoms in the first

place, while the latter requires as low a pressure as possible to avoid undesired atom

loss. The first chamber is therefore referred to from here on in as the MOT cell, where

atoms are trapped and laser-cooled from a background vapour. The second chamber

is referred to as the science cell, which is held at a lower pressure than the MOT cell,

providing the extended lifetimes required for our experiments1. The pressures required

throughout the system are in what is known as the ultra-high vacuum (UHV) regime,

typically defined as ∼ 10−12 to 10−9 mbar. The difference in pressure between the

two regions is maintained by the continual operation of two ion pumps separated by

low-conductance tubes. The background vapour of alkali atoms in the MOT cell is

sustained by regular deposition on the chamber walls from atom sources located in an

adjoining vacuum tube.

2.1.1 Differential pumping design

The basic design of a two-chamber vacuum system depends on the desired ratio of

pressures between the two regions. Applying the old adage that it is better to be safe

than sorry, we decided to aim for a drop of around three orders of magnitude across

1The system is displayed in figures such that the MOT cell is on the right while the science cell is
on the left. This is due to its orientation in the laboratory - the familiarity of several years’ work is
hard to shake.
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p0p1p2

c2 c1

s1s2

Figure 2.2: Representation of our differential pumping system (a simplified representation
of Fig. 2.1). The pressure p0 is assumed to be constant due to the vapour pressure from the
rubidium and potassium on the walls of the MOT chamber which is regularly replenished by
the atom sources. The low conductances c1 and c2 allow a large stable pressure drop to the
science cell at p2, maintained by the relatively high pumping speeds s1 and s2 to the ion pumps.

the system. This could be achieved with a single low-conductance tube and a single

pump, but the tube would either have to be excessively long or narrow, which would

be detrimental to the transportation of atoms along the system. Instead we chose a

two-stage differential-pumping setup, a simplified depiction of which is shown in Fig.

2.2. Pressures are denoted p, conductances c and pumping speeds as s. p0 is the

pressure in the MOT cell, p2 in the science cell. In reality the system is made up of

many components in series, but we may simply calculate total conductances cT using

1

cT
=
∑
i

1

ci
. (2.1)

As we use identical pumps with similar conductances at their inlets we make the sim-

plification s1 = s2 = s. By considering the system to have reached a steady state it is

possible to equate total pumping speeds to and from each vacuum region, to give the

pressure ratio from MOT cell to science cell as

p2

p0
=

c1c2

c1c2 + c1s+ 2c2s+ s2
. (2.2)

Generally c � s , such that (2.2) may be approximated as p2/p0 ≈ c1c2/s
2. This may

be compared with the fraction c/s for a single pumping stage. The total pressure drop

is not the only consideration for the design of the differential pumping system however.

Once we have collected the desired number of atoms in the MOT chamber, we want

to transport as many of them as possible to the science cell at as low a temperature

as possible, so any collisions between trapped atoms and the background gas in the

vacuum chamber are undesirable. The main initial concern therefore is dropping the

pressure quickly. We could of course do this by means of a very small aperture (and

hence low conductance) between the MOT cell and the first pump, but there is a limit

to how small an aperture we can safely transport the atoms through. In the molecular

flow regime1 the conductance of a long circular tube is given (in litres per second) by

1The molecular flow regime is roughly defined to be where the mean free path of particles in a gas
is greater than the size of the confining system, such that generally the particles travel from chamber
wall to chamber wall without encountering other particles. The system is well within this regime.
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Figure 2.3: Pressure drop along a theoretical vacuum system as described in the text, where
the final pressure reached is fixed to be 0.1% of p0. l1 varies from 0.25 l0 to 2.0 l0 in steps of
0.25 l0. The black line represents the case where l1 = l2 = l0, while red and blue lines represent
l1 < l0 and l1 > l0 respectively. There is a clear trade-off between rate of pressure drop-off and
the pressure reached after the first stage of differential pumping. This general scaling informed
the choice of vacuum components in our system. Inset is the same information on a linear-
linear scale, illustrating the linear scaling of the pressure with distance along a tube of uniform
cross-section.

[39]

c (l s−1) ≈ 12.4

(
d

1 cm

)3(1 cm

l

)(
T

295 K
× mN2

m

)1/2

, (2.3)

where d is the diameter and l the length of the tube, m is the particle mass and T the

temperature. Fixing d to be the minimum diameter for atom transportation results

in conductances inversely proportional to l. The pressure drop for the first stage of

pumping is given by
p1

p0
=

c1(c2 + s)

c1c2 + c1s+ 2c2s+ s2
, (2.4)

while the pressure drop along a tube is simply linear. The result of all this is that if

we fix the total pressure drop p2/p0 then the pressure gradient is greater initially for

shorter length l1 of the first tube (corresponding to conductance c1 ∝ 1/l1). This is

illustrated in Fig. 2.3 on a logarithmic pressure scale for p2/p0 = 1/1000, where the

black line represents the case where l1 = l2 = l0, while red and blue lines illustrate cases

where l1 < l0 and l1 > l0 respectively. The plot shows the pressure drop along the first

tube immediately followed by the pressure drop along the second ignoring any interim

space, x̃ = x/l0 representing distance along the system. Here it is clear that the full

pressure drop is achieved in the shortest distance for l1 ≈ l2, but faster initial drops are

achieved for l1 < l2. Of course if the first tube is too short then the pressure p1 won’t
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be much lower than p0, defeating the purpose of using a small l1. A happy medium is

achieved when p1 is acceptably low. Our final design has a theoretical p1/p0 ≈ 1/27

and p2/p0 ≈ 1/1200. It can be seen on the cross-section shown in Fig. 2.1 that we have

adhered to the spirit of the above arguments as far as possible, with the customised

‘reducing cross’ piece on the right having a wider flange towards the MOT cell so that

the pressure is reduced more quickly (corresponding to an effective low l1), with the

narrower flange making up part of the longer second conductance tube.

The simple model we have been considering does not hold so well once we are

working at extremely low pressures (in the 10−11 mbar regime at the science cell) due

to outgassing from the walls of the vacuum chamber becoming a limiting factor. This is

reduced as far as possible as discussed in §2.1.3, but nonetheless in reality the pressure

at the science cell is closer to only two orders of magnitude lower than at the MOT

cell. The effect is mainly on p2, and as stated earlier it is worth leaving some leeway in

the design. The lifetimes of several minutes achieved for trapped gases in the science

cell are extremely satisfactory.

2.1.2 Components

The complete vacuum system is shown in Fig. 2.4 with a breakdown of the key com-

ponent parts. Most of the pieces are standard items bought from various vacuum com-

panies, while others, such as the ‘4-way reducer crosses’, were customised on request

for non-standard lengths and tube diameters. All of the metal near the atom-transport

axis is 316LN stainless steel as opposed to standard 304L, the main advantage being

the lower magnetic susceptibility of the material (0.001 instead of 0.03). This is to

minimise any possible distortion of the magnetic fields we create in the system with

external coils. All components in the system are UHV compatible, connected together

with standard UHV conflat (CF) flanges and may be baked to well over 200 ◦C (see

§2.1.3). Below the important features of some of the vacuum components are discussed.

Pumps

As has already been alluded to, UHV is maintained by the workhorse pumps of the

system - a pair of Gamma Vacuum TiTan 75S ion pumps, which have a pumping speed

of ∼ 60 l s−1 each. The pumps operate by ionising gases and using an electric field

to accelerate these ions into solid electrodes, trapping the particles by chemisorption.

As such, no material physically leaves the system, so the pumps can only be operated

below ∼ 10−5 mbar to have a reasonable lifetime. The effective pumping speed to the

vacuum chamber is only around 20 l s−1, which is limited by the conductance between

the pump and the main chamber, so an increase in pump size would have little effect.

In order to reach a pressure at which the ion pumps can operate we use an Oerlikon

Leybold Turbovac TW70 H turbomolecular (turbo) pump. The turbo pump itself only
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Figure 2.4: An isometric projection of the vacuum system. a Ion pumps. b Titanium sublima-
tion pump. c Turbomolecular pump. d MOT cell. e Science cell. f Atom sources. g All-metal
right-angle valve. h Bayard-Alpert pressure gauge. i ‘Cube’ with windows.

operates with a maximum forevacuum of ∼ 20 mbar, so it is backed by an Oerlikon

Leybold SC 5 D scroll pump. The main advantage of using a scroll pump as a roughing

pump is that it is oil free (unlike most alternatives), so there is no chance of oil feeding

back into the system which would prevent the attainment of UHV. The turbo pump

can itself be used to reach ∼ 10−9 mbar, well below the pressure required for ion pump

operation, and is operated during baking to reduce the load on the ion pumps while

pressures in the system are still relatively high. Once the turbo pump has completed

its job we use the VAT all-metal angle valve to close off the vacuum chamber and we

may detach the turbo pump and scroll pump. The ion pumps are supplemented by

occasional use of a Varian 916-0050 series titanium sublimation (Ti sub) pump. This

operates by forming a reactive coating on the walls of the vacuum chamber, effectively

removing molecules such as H2 which are less readily dealt with by the ion pumps.

We apply a current of 47 A for ninety seconds roughly twice a year to replenish the

deposited titanium.
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Figure 2.5: Annotated diagram of the MOT cell with viewports attached. Some important
dimensions are shown (in mm), such as the 92 mm total clearance required for the transport
coils.

MOT cell

Vacuum chambers for laser cooling require optical access from several angles, and there-

fore typically fall into one of two broad categories: an all-glass chamber (as used in the

trial setup - see Appendix B), or a steel body with viewports bolted on. We took the

latter path for the sake of robustness and the fact that viewports can easily be anti-

reflection (AR) coated on both surfaces, while typically all-glass chambers can only be

coated on the outer surface (once the manufacturing process is complete). We chose to

use a standard vacuum flange size of 70 mm diameter for the kodial viewports, which

have 38 mm clear window diameter to allow for large MOT trapping beams.

At the point of designing the MOT cell we were yet to settle on the exact configu-

ration of the complete system, most importantly the method of transportation of the

atoms to the science cell. We had decided to implement magnetic transportation, but

this may be done in two ways: Either with a series of coil pairs along the transportation

axis, ramping up each pair in turn such that the magnetic minimum travels smoothly

along the system [40], or by using a single coil pair mounted on a translation stage

such that the magnetic minimum travels with the trapping coils as they are physically

moved [41]. The design therefore had to cater to either eventuality. In either case a low

vertical profile is advantageous, so the cell was designed to have a main body height

of 44 mm as shown in Fig. 2.5, just slightly larger than the viewable diameter of the

windows. This allowed enough margin for tubes to be welded to the main body, ex-

tending out to CF flanges for attaching the horizontal viewports. Added to this 44 mm
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2.1 Vacuum system

Figure 2.6: Constructed MOT cell with the atom sources in the background. The cell is
displayed with some of the supports used to mount the chamber during construction which were
subsequently replaced by a single, less obstructive support to allow room for the translation
stage and transport coils.

was the minimum flange height to accommodate threaded holes to securely attach the

vertical windows, resulting in a total chamber height of ∼92 mm once the height of the

securing bolt heads are taken into account. This limits the trapping coil separation if

the translation method is used, while the possibility of a series of coils is catered for by

allowing the first pair (with inner diameter greater than 70 mm) to nestle against the

MOT cell body with only 44 mm separation.

In the end we opted for the translation method for atom transportation as described

in §2.5. The finished constructed MOT cell is shown in Fig. 2.6. It allows access for

the three orthogonal pairs of beams in a standard MOT configuration with a couple

of spare viewports for monitoring fluorescence from the cell, a connection to the atom

sources and a narrow connection along the transportation axis to reduce conductance

to the rest of the system.

Science cell

At the science cell the requirements are slightly different as we want to be able to

take high resolution images of the atoms requiring close-proximity lenses, while also

allowing for access for further lasers (e.g. the optical dipole trap) and surrounding

magnetic coils. Due to the low profile and optical access that this requires, we decided

to buy a high-quality glass cell from Starna Scientific as shown in Fig. 2.7. The cell has

a 30× 30 mm square outer cross-section, which allows a reasonable numerical aperture

to the lens systems for both horizontal and vertical imaging, and is 110 mm long with

5 mm thick quartz walls which are AR coated on the outside (as mentioned above, the
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Figure 2.7: The science cell shown with its connection to the rest of the vacuum system.

manufacturing technique precludes AR coating of the inner surface). A glass-metal

connection extends to a small (34 mm) CF flange for connection to the rest of the

vacuum system.

Atom sources

While we are trying to create such low-pressure conditions in the vacuum system, we

also need a supply of our intended atomic species to study. As we have to bake the

system to a temperature well above the boiling points of both rubidium and potassium

to achieve UHV we cannot just leave a lump of material in the system. One solution

is to intern a sample in a glass ampule, so that it is contained during baking, then to

break the ampule once we are back at room temperature. The release of atoms into

the system can then be controlled to some degree by heating or cooling the sample. A

more controllable method is to use commercially available vapour sources which rely on

a reaction which is activated at high temperatures (> 300◦C), above the required bake-

out temperature. We chose to use sources from Alvatec, a company now specifically

catering to cold atom experimentalists. These particular sources are based on an alloy

of the alkali metal and have an indium seal which allows exposure to the atmosphere

during construction of the vacuum system without detrimental effects. The indium

seal melts at ∼ 160◦C, after which the sources may be operated by passing a current

through the material causing only the alkali metal to sublimate. In order to be able

to pass the required current of around 4-5 A through the sources we spot weld them

to contacts on a UHV electrical feedthrough, allowing connection to an external power

supply. When a current is applied the temperature rises in the sources, eventually

releasing atoms to coat the walls of the vacuum chamber.
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Isotope Natural abundance (%)

39K 93.26

40K 0.012

41K 6.73

85Rb 72.17

87Rb 27.83

Table 2.1: Natural abundances of the isotopes of potassium and rubidium.

A major advantage of using rubidium and potassium for cold atoms experiments

is that we may rely on the background pressure from the resultant coating to directly

load a MOT. This is due to their relatively high vapour pressures at room temperature

of around 4 × 10−7 mbar for rubidium, 2 × 10−8 mbar for potassium, compared with,

for example, sodium for which it is about 4× 10−11 mbar [42]. To reach an acceptable

pressure to load a MOT, sodium needs substantial heating to temperatures where the

Boltzmann distribution of velocities requires that only a small fraction of atoms will

be travelling slowly enough to be captured. This then demands an extra atom cooling

stage1, increasing the complexity of the experiment.

It is usually enough for day-to-day operation in the lab simply to activate an atom

source once every twenty-four hours to keep the pressure up, but for more critical

experiments we can use shorter pulses each experimental cycle to keep the atom supply

as steady as possible over the course of a day. We actually have two sets2 of four different

sources in the experiment - natural abundance rubidium and potassium sources and

enriched 87Rb and 40K versions. The natural abundances are shown in Table 2.1,

illustrating another advantage of studying 39K (93.26% abundant). It is clear that it is

essential to use enriched sources for studying 40K, those in our system having a > 10%

abundance in preparation for the possible future work with fermions. It is not essential

to enrich rubidium, but it is relatively cheap in terms of extra expenditure to potential

gain in system performance given that the enriched sources have a 98% abundance of
87Rb, and that MOT performance scales with the ratio of partial pressures of the atom

we are trapping to residual gases.

With these four different sources we can in principle have reasonable control over

the relative pressures of each species in the MOT chamber. It is not quite straight

forward as the sources coat each other, meaning that an increase in pressure is seen

1Typically a Zeeman slower is used, which relies upon the combination of the Doppler and Zeeman
effects to keep a beam of decelerating atoms in resonance with a laser acting at a constant frequency.
This generally adds a meter of vacuum chamber and coils to the system, along with an oven to heat
the atoms.

2A word of caution - we mounted one set such that the sources are pointing downwards without
noting the recommendation that this not be done in the Alvatec information manual. This is the likely
cause of faulty operation of some of our sources.
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for all species whenever a single source is fired, but repeated firing of a single source

does result in the expected alteration in composition of gas in the MOT cell. Each

source contains around 50 mg of its respective alkali, enough to coat the MOT cell in

a monolayer several thousand times over, but the lifetime of a source depends on the

pumping rate from the MOT cell. We are yet to exhaust a source after two years’

operation.

Pressure Gauge

To monitor the pressure while pumping down the system we have included a Bayard-

Alpert style ion gauge from Vacom. This works very similarly to a very low speed

ion pump, monitoring the ion current to gauge pressure. The current is highly species

dependent however, and so the gauge is only useful as a rough guide, though it is quoted

to work down to 3× 10−11 mbar. Due to our chosen positioning for the gauge (see Fig.

2.4) we can only operate it while the system is not in use due to the obstruction caused

by connecting the controller cable. The rest of the time we can use the ion pump

controllers to give us a rough estimate of the pressure in the system.

Cube

The main curiosity-piece of our design is the central ‘cube’ with connected windows

(see Fig. 2.4 i). This was included mainly to enable the imaging of atoms part-way

down the system for diagnostic purposes. It was also considered that we might initiate

evaporative cooling here with additional magnetic coils to increase the trap gradient

before continuing to the science cell. In the end we have not really taken advantage of

it, though this owes something to the fortunate lack of major problems with the vacuum

system. If we were to make a new system based on this design it would be tempting

to leave the cube out to simplify the alignment of the system along the transportation

axis.

2.1.3 Assembly and bake-out

Our prior knowledge of UHV systems was thin on the ground at the outset of the

project and so much of the procedure for the cleaning, assembly and baking of the

chamber was acquired from discussion with members of the extended AMOP group,

PhD theses and in fact anyone who would care to give advice in the department at large.

A particularly thorough source worth mentioning is the PhD thesis of Kevin Birnbaum

[43] and additional associated information available online from the Quantum Optics

Group at Caltech. We also experienced a steep learning curve with the construction of

the trial system before setting to work on the main event.
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Cleaning

Briefly then, most vacuum parts were cleaned prior to construction of the vacuum

chamber, either by hand with acetone soaked lens paper or by immersion in acetone in

an ultrasonic bath where possible, handling components with clean nitrile gloves at all

times. These items were then rinsed with isopropanol to remove any acetone residue

and wrapped in clean aluminium foil once dry to await incorporation into the vacuum

system. Exceptions were the right-angled valve and ion pumps which were left as we

received them, and the viewports and science cell which were cleaned with methanol

and isopropanol to avoid damage to the AR coatings.

Assembly

Smooth assembly of the system was aided by laying out all necessary parts prior to

construction, i.e. nuts, washers, bolts, spanners, copper gaskets, vacuum components,

and additional lens paper and methanol for last-minute cleaning of the CF flanges.

The sealing mechanism involves a sharp knife edge on each of the pair of flanges that

are being joined together. A copper gasket is placed in between, and as the bolts are

tightened the knife edges bite into the copper in a complete ring to form a leak-tight

seal. A final clean and close inspection of the knife-edges is essential given that this is

where the seal is made.

In order to allow deconstruction of the system in the future it is important to

lubricate the bolts to avoid seizure after baking. This can be a messy business if using

a liquid lubricant which could accidentally end up inside the system, so we have used

self-lubricating silver-coated bolts throughout to avoid the hassle. When forming a

joint each bolt was made finger-tight before using spanners to gradually tighten the

bolts in a star-shaped pattern to ensure an even seal. Once complete the flange faces

should not quite be flush, allowing possible adjustment of the seal if a leak becomes

apparent. The assembled vacuum system is shown in Fig. 2.8.

Bake-out

Even with the most stringent solvent-based cleaning of vacuum parts it is impossible

to reach UHV without baking. This is because in the UHV regime the majority of

particles in the system are adsorbed to the walls of the vacuum chamber rather than

travelling between walls. The contaminants on the walls desorb at a high enough rate

to limit the pressure in the chamber but too slowly to be effectively pumped away

at room temperature. A dynamic model of desorption rate [44] based on adsorbed

molecules requiring an activation energy to leave the surface of the vacuum chamber

(analogous to vapour pressure as described by the Clausius-Calpeyron equation) pre-

dicts an adsorption lifetime proportional to exp(HA/RT ), where HA is the enthalpy of

adsorption and R is the gas constant. This is inversely proportional to pressure in the
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Figure 2.8: Assembled system before bake-out. The turbo pump is removed once the bake-out
is over.

molecular-flow regime, allowing us to relate temperature and pressure via the equation

ln(P ) =

(
−∆HA

R

)(
1

T

)
+ c . (2.5)

If there is a fixed amount of material in the system we may increase the temperature to

increase the pressure, and with each order of magnitude increase in pressure the pump-

ing rate effectively increases by an order of magnitude (most pumps have a relatively

constant pumping speed in terms of volume).

Prior to baking the scroll and turbo pumps are turned on for the initial evacuation

of the system. To prepare for the baking (Fig. 2.9) we first cover the science cell with a

protective aluminium tube and the viewports with aluminium foil ensuring there is no

direct contact with the metal. This is to avoid direct local heating of glass which could

cause damage to the AR coatings or possibly even a leak. We then attach thermocouples

at key points around the system to monitor temperatures as it is important to avoid

large temperature gradients (thirteen thermocouples were used for our bake-out). To

allow independent control of heating rates for different sections of the system we wrap

several heating tapes (PTFE coated resistance wires) around the system and attach

each to a variable AC autotransformer (variac) to control the voltage applied to the

wires. The heater tapes used were mainly Isopad TeMS 6 tapes, supplying a maximum

heating power of 150 W m−1. The ion pumps came with their own heating elements

which can be bolted directly to their casings. Insulating the system well is vital to

reach the desired baking temperature, so we first wrap the system in glass fibre tapes

and blankets before adding several layers of aluminium foil.

Once the system has been fully prepared we can start to turn up the voltages on
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a b

c d

Figure 2.9: Preparing the system for baking. a The science cell is sheathed by an aluminium
tube and the viewports are wrapped carefully in aluminium foil to avoid direct heating of
glass components. Thermocouples are attached at strategic points to monitor the temperature
throughout the system. b Several heating tapes are wrapped around the system enabling
independent control of heating rates in different regions. c Insulation tape and blankets are
wrapped around the system. d Final additional insulation is provided by layered aluminium
foil.

the variacs while monitoring temperatures throughout the system, aiming to keeping

the rate of increase in temperature below the recommended limit of 1 ◦C per minute.

It should be noted that the turbo pump should not exceed ∼ 80 ◦C, so we try to keep

as gentle a gradient between it and the rest of the system as possible while adhering

to this criterion. We do not turn the ion pumps on until we have passed the point at

which the indium seals of the atom sources have melted at ∼ 160 ◦C due to the sudden

increase in pressure in the system at this point. Once we are sure we are past this point

and the pressure has reached a reasonable level once more below 1×10−6 mbar we turn

the ion pumps on to increase the overall pumping speed.

The first two bake-out attempts of the system were prematurely halted by broken

heater tapes, most likely due to excessive local heating breaking a connection some-

where along the tape. As this would lead to a local cold spot we were forced to gradually

bring the temperature in the rest of the system back down to room temperature before

stripping away the insulation to replace the faulty part. Our third attempt went far

more smoothly, and we brought the temperature of the system up to a steady temper-

ature of 220 ◦C. All the components in the system were quoted as being bakeable to

250 ◦C, so we went as far as we were prepared to risk whilst allowing a safety margin.

The baking period was determined by observing a plateau of the system pressure when

held at the constant temperature. During the bake-out period we occasionally fired the

Ti sub pump to see if it would help matters, and ran a low current through the atom

sources to help degas them and make sure they were at a higher temperature than
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Figure 2.10: Plot of how the pressure recorded by the Bayard-Alpert gauge varied during
the final bake-out of the system. The black points represent the ramping up of temperature in
the system (here measured by the thermocouple closest to the pressure gauge) and holding the
temperature, while the red points represent the cooling period after baking. Spikes in pressure
coincide with application of the Ti sub pump which causes temporary local outgassing and a
consequent increase in pressure near the gauge. There are clear steps down in pressure where
the temperature was held constant for a long period signifying successful baking. The gradient
of the red points gives a ∆HA of around 40 kJ mol−1.

the surrounding system so as not to localise dirt on the sources. Once the recorded

pressure had not changed for a couple of days we began to ease the system back to

room temperature. The resultant plot of this final bake-out is shown in Fig. 2.10. It is

not quite as dramatic as perhaps it might be given that during our two aborted baking

attempts we had already pumped a great deal of material out of the system, so we

appear to return to a similar pressure as we started, but this is around the limit of the

pressure gauge so cannot fully be trusted. The suggestion is though that at the gauge

we have reached a pressure in the 10−11 mbar range. The relation of equation (2.5) is

observed to hold reasonably well while decreasing the temperature as expected, with

the measured gradient giving a ∆HA of roughly 40 kJ mol−1 which is fairly typical of

such systems [45]. Once a fully operational UHV chamber with atom sources has been

created, we need means of adding light and magnetic fields in order to manipulate the

atoms, as will be discussed in the following sections.
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2.2 Magnetic coils

It is probably already clear that magnetic fields play a vital role in the cooling and

trapping of atoms. They are required for laser cooling in the MOT, transport to the

science cell and for trapping the atoms during the first stages of evaporative cooling, as

well as for accessing Feshbach resonances, providing guide fields for imaging and optical

pumping of atoms and simply to cancel out the effects of the background magnetic field

in the lab. The simplest way to produce magnetic fields in a controllable manner is

to pass a current through a wire, and generally the easiest shape to work with (both

for designing and winding magnetic coils) is a circle. The vast majority of coils in the

system consist of sets of circular loops, the key aspects of which are discussed below.

Magnetic field from a circular loop

The magnetic field B produced at a position r by passing a steady current I through

an element of wire dl may be calculated from the Biot-Savart law

dB =
µ0I

4πr3
dl× r , (2.6)

where µ0 is the permeability of free space. For a circular loop of radius a we may write

dl = (−a sin θ, a cos θ, 0) dθ (2.7)

r = (a cos θ − x, a sin θ − y, z) (2.8)

where we have defined the origin r = 0 to be at the centre of the loop and the axis

of the circle is in the z direction. B is then found by integrating (2.6) around the full

loop. This may be found analytically in the on-axis case where, by symmetry, the x

and y components of the magnetic field Bx and By are zero, while the z component is

found to be

Bz =
µ0I

2

a2

(a2 + z2)3/2
. (2.9)

We can also infer some information about By and Bz close to the axis from Gauss’ law

for magnetism, ∇ ·B = 0, and the fact that by symmetry dBx/dx must be equal to

dBy/dy on axis, such that

2
dBx
dx

= 2
dBy
dy

= −dBz
dz

= B′ . (2.10)

Bias fields

The guide, compensation and Feshbach fields mentioned above should ideally be uni-

form over the experimental region. A single coil cannot easily provide this, but the

field gradients (and in fact all odd terms in a Taylor expansion for the field) at the

centre-point of two identical co-axial coils with the same current circulation will cancel.
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2.2 Magnetic coils

This creates a field that is uniform below second order, which is also true along x and

y via (2.10). The bias field produced at the centre of a coil pair separated by a distance

d is simply twice (2.9) with z = d/2. It is convenient to work with B in gauss, I in

amps and distances in centimetres, giving

Bbias =
4πI

10

a2

(a2 + d2/4)3/2
G . (2.11)

The curvature of the field can be found from differentiating (2.9) twice with respect to

z and setting z = d/2. It may be shown that it disappears for d = a such that the

field is uniform to below fourth order expansion terms. This is known as the Helmholtz

configuration, which we have tried to use for our bias coils where possible.

Quadrupole fields

Reversing the direction of current flow in one of the pair of coils will instead produce

a quadrupole field as required by the MOT and for simple magnetic trapping, where

B = 0 at the centre (as now all the even expansion terms cancel). B′ from (2.10) and

(2.9) evaluated at z = d/2 is then the total gradient along the ‘weak’ x and y axes

(twice the x and y gradient of a single coil), while −2B′ gives the total gradient along

the ‘strong’ z axis. When again converted to gauss with distances in centimetres this

gives

B′ =
3πI

10

a2d

(a2 + d2/4)5/2
G cm−1 . (2.12)

Analogously to the Helmholtz configuration above, for a separation d =
√

3a the third

order term vanishes at the coil-pair centre, giving the most linear field gradient. This

arrangement is known as the anti-Helmholtz configuration. Also useful for coil design

is the fact that B′ is greatest for d = a for fixed a and for a = d/
√

6 for fixed d.

In practice we use coils made up of several turns each, so one may sum the above

expressions over various a and d to estimate the resultant fields. Further considerations

of coil design include the coil inductance, power dissipation (which manifests itself as

thermal energy) and the consequent water-cooling required.

2.2.1 Coils around the MOT cell

The properties of the coils located around the MOT cell are summarised in Table 2.2.

The requirements are fairly minimal as only laser cooling is carried out at this end

of the system. Three pairs of compensation coils (providing tuneable bias fields along

three axes) are used to cancel out the background magnetic field of the order of 1 G,

while the transport coils provide the small field gradient required for magneto-optical

trapping. The compensation coils are essential to minimise the magnetic field at the

atoms during the optical molasses stage (see §2.3.1). One of the horizontal pairs is also

used to provide a guide field for optical pumping (§2.4.3).
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2.3 Laser cooling

Coil Wire Turns Dimensions Separation B0/I B′/I
(mm) (cm) (cm) (G/A) (G/(cm A))

Transport �4.0 10×4 �5.1 9.8 0.40

Comp. (Vert.) �1.0 3×3 �9.0 4.4 1.73

Comp. (Horiz.) �1.0 5×8 �7.2 20.0 0.55

Table 2.2: Parameters of the coils used around the MOT cell. The number of turns are given
in the form Nradial × Naxial, while the given dimensions and separations refer to clear inner
distances. The compensation fields have not been verified by direct measurement.

A current of up to 200 A can be supplied to the transport coils by a Delta Elektronika

power supply for magnetic trapping, producing a maximum field gradient along the

weak radial direction of B′ = 80 G cm−1. Such high currents naturally generate a lot

of heat, so the coils are made from hollow tubing to allow water cooling. Fail-safes are

included to stop the coils over-heating; a flow-meter detects whether water is flowing

through the water-cooling tubes and thermistors detect if the coils are over-heating.

The flow-meter is connected to the power-supply itself, setting the output to zero if the

water flow drops below a certain level. Voltage comparators are used in conjunction

with the thermistors to provide a signal to break the electrical connection of the coils

via an insulated gate bipolar transistor (IGBT) if the coils reach above ∼ 60◦C. The

IGBT is also used for switching of the coils during the experimental sequence. Similar

safety precautions are taken with all the other coils in which high currents can flow.

2.2.2 Coils around the science cell

The properties of the coils located around the science cell are summarised in Table 2.3.

The transport coils also operate in this region, while another three pairs of compen-

sation coils are used to cancel the local background fields at this end of the system.

In addition, two pairs of bias coils are wound on top of the (rectangular) horizontal

compensation coils. The coil pair for providing large bias fields to utilise the Feshbach

resonance at 402.5 G is wound from the same hollow copper tubing as the transport

coils to allow water cooling. The coils produce a bias field of 528 G when a current of

200 A is flowing through them. Finally, a small Ioffe coil is used in the formation of

the QUIC trap described in §2.6. It is mounted on a water-cooled copper block. The

layout of the coils around the science cell is shown in Fig. 2.11.

2.3 Laser cooling

The cooling of atoms by lasers relies on atoms absorbing and re-emitting photons. A

simple illustration of this concept is given in Fig. 2.12 for an atom travelling towards

a laser source. Each time the atom absorbs a photon its momentum is reduced. The

subsequent emission of photons occurs in a regular dipole pattern such that these
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2.3 Laser cooling

Coil Wire Turns Dimensions Separation B0/I B′/I
(mm) (cm) (cm) (G/A) (G/(cm A))

Transport �4.0 10×4 �5.1 9.8 0.40

Feshbach �4.0 7×2 �7.0 3.6 2.64

Bias (Axial) �1.0 10 7.4×14.9 5.6 1.43

Bias (Trans.) �1.0 10 6.2×15.2 5.6 1.46

Comp. (Vert.) �1.0 7×3 �19.0 7.0 2.28

Comp. (Axial) �0.7 8 7.4×14.9 5.6 1.14

Comp. (Trans.) �0.7 8 6.2×15.2 5.6 1.14

Ioffe �1.0 6×3 �1.0 1.7∗

Table 2.3: Parameters of the coils used around the science cell. The number of turns are either
given as a total or in the form Nradial×Naxial. Dimensions (as a diameter for circular coils and
as side lengths for rectangular coils) and separations refer to clear inner distances. ∗‘Separation’
here refers to the distance from the face of the Ioffe coil to the centre of the quadrupole field.
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Figure 2.11: Layout of the magnetic coils around the science cell. In grey are the transport
coils, black the Feshbach coils and in white the Ioffe coil. The copper coloured coils are the bias
and compensation coils (the rectangular coils each contain two sets of coils, wound around the
same groove of the coil mount).
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Figure 2.12: Simplistic view of laser cooling. a A photon with momentum −~k is incident
upon an atom travelling with momentum p. b If the photon is absorbed the momentum of the
atom is reduced. c After absorbing N such photons the momentum of the atom is reduced to
p−N~k as the momentum kicks from photon re-emission cancel.
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Figure 2.13: The Doppler effect in the case of counter-propagating beams. a The frequency
of the light in the lab frame is ω. b In the rest frame of the atom the frequencies are shifted by
±kv.

momentum kicks tend to cancel one another out. Over many cycles the atom is slowed

down, which may be used to reduce the spread of atom velocities for a group of atoms,

cooling them down. This is the effect of the scattering force from near-resonant light

introduced in §1.4.3.

The key point is that to cool an atomic cloud each atom must mainly absorb photons

with momenta in opposition to its direction of motion, but the velocities of atoms in a

gas are randomly distributed. A method of coping with this problem was proposed by

Hänsch and Schawlow in 1975 [46], now known as optical molasses.

2.3.1 Optical Molasses

Initially considering the one-dimensional case, a counter-propagating beam must be

introduced to allow the possibility of atoms receiving momentum kicks in the opposite

direction. Some mechanism is then required by which atoms will preferentially absorb

photons from the beam that opposes its motion. This is achieved by the neat trick

of detuning the beam frequency slightly to the red of resonance. The Doppler shift

then acts to bring the deceleration beam back towards resonance while shifting the

acceleration beam further off resonance, providing a net damping force. Atoms close

to zero velocity are equally off-resonant with both beams and therefore feel no further

force. Here we are once more considering the ideal two-level picture. We may describe
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2.3 Laser cooling

this in terms of the scattering force Fsc of equation (1.67) by replacing δ with δ± kv =

ω − ω0 ± kv to obtain

Fmol = Fsc(ω − ω0 − kv)− Fsc(ω − ω0 + kv) (2.13)

' −2
∂Fsc

∂ω
kv (2.14)

' −αv (2.15)

for kv . Γ, where the damping coefficient α is given by

α = −4~k2 (I/Is)(2δ/Γ)

[1 + 2I/Is + (2δ/Γ)2]2
. (2.16)

The extra factor of 2 in intensity in the denominator of α arises because saturation

must be considered in terms of both beams. This is valid for v . 4 m s−1 for potassium

and rubidium. α is positive for red-detuned beams so the resultant force does indeed

always oppose the motion of the atom. This is equivalent to motion in a viscous fluid

(such as molasses).

2.3.2 Doppler limit and sub-Doppler cooling

This picture may be extended by the addition of two further sets of counter-propagating

beams along orthogonal axes to provide strong damping in all three dimensions. This

might be expected to lead directly to temperatures approaching absolute zero. However,

the idea that the scattering via spontaneous emission in Fig. 2.12 c cancels to zero is

not true for individual atoms, and instead they are heated by a random walk in velocity

space where each step is a single recoil velocity vr = ~k/m. The atoms also undergo

a random walk via absorption (along the paths of the beams) once they are at low

velocity. The balance of cooling and heating leads to a limit on the temperature that

it is possible to reach in this picture of optical molasses, which is minimised for a

frequency detuning δ = Γ/2. This is known as the Doppler limit [47] and is given by

kBTD =
~Γ

2
. (2.17)

TD is 144µK for our atomic species.

This technique was first successfully implemented in 1985 by Chu et al. [48], but cu-

riously it was observed not long afterwards that for larger frequency detunings the tem-

peratures reached were well below the Doppler limit [49]. This remarkable phenomenon

was explained by Dalibard and Cohen-Tannoudji [50] and relies on the multi-level na-

ture of the atoms. The polarisation of the electric field produced by counter-propagating

beams with opposite circular polarisations varies with period λ/2. The Zeeman sub-

levels of the ground state are perturbed by the electric field by differing amounts that

depend on the polarisation of the field, resulting in energy levels that oscillate in space
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Figure 2.14: Simplified depiction of the mechanism behind sub-Doppler Sisyphus cooling. a
Length scale in terms of the wavelength λ of the optical molasses beams. b The variation of
polarisation through space produced by two counter-propagating beams. c Relevant energy
levels, including the splitting of the degenerate ground state which is polarisation dependent.
d The energy Ea of an atom as it travels from left to right. The arrows in c show how an atom
in one of the ground states loses kinetic energy by travelling to a position of higher potential
energy, at which point it is pumped to a ground state at lower energy.

with a phase offset between them (see Fig. 2.14). As an atom moves in space it loses

kinetic energy as it travels up the potential hill. Near the peak the circular polarisation

of the light near this point pumps the atom into a sublevel of lower energy. Due to

the short excited-state lifetime the position of the atom is essentially constant during

this process. The energy loss is accounted for by the difference in energy between the

absorbed and emitted photon. Now in a different substate, the process is repeated

with sublevels and circular polarisation reversed at a position λ/4 further along. This

process has become known by the term ‘Sisyphus cooling’ due to the resemblance to

the Greek myth of the king punished to forever push a boulder uphill only to watch it

roll back down again.

The procedure is repeated until the energy of each atom is comparable to the light

shift amplitude of the energy levels1, resulting in temperatures of tens of µK, around

1A more rigorous treatment given in [51] suggests the limit is around 40Er , when the amplitude
of the lower-state light shift is ≈ 100Er, where Er = mv2

r /2 = ~2k2/2m is the recoil energy (it is not
possible to reach arbitrarily low temperatures by simply reducing the laser inensity).
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2.3 Laser cooling

an order of magnitude lower than the Doppler temperature. The success of this process

was a major step towards cooling atoms to quantum degeneracy. The only downside

is that this technique alone does not actually trap atoms due to the lack of a restoring

force. This was rectified by the development of the magneto-optical trap - a concept

suggested by Dalibard [52] and first implemented at Bell Laboratories, USA [53].

2.3.3 Magneto-optical trap

A weak magnetic field may be used to split the atomic energy states via the Zeeman

effect of equation (1.36) to create an imbalance in the radiation force from counter-

propagating beams that is now dependent on position. The beams must have opposite

circular polarisations so that they interact with different electronic transitions such that

an increase in magnetic field strength takes one beam closer to resonance, the other

further away. If a quadrupole field is used the resultant linear energy level splitting

allows us to use a very similar treatment to that of Doppler cooling described above.

This principle is illustrated in Fig. 2.15. Replacing δ in equation (1.67) now by δ ±
(kv + βz) = ω − ω0 ± (kv + βz), where β~z = (g′m′ − gm)µBB

′z is the energy shift of

a transition resonance, directly leads to the one-dimensional scenario where

FMOT ' −αv −
αβ

k
z , (2.18)

valid for βz . Γ. This can once again be extended to three dimensions by careful choice

of the beam polarisations of the three beam pairs as shown in Fig. 2.16. The MOT is

a very robust trap and can capture atoms with significantly higher velocity than are

slowed by the optical molasses technique, allowing us to load the trap directly from a

room temperature vapour for potassium and rubidium.

2.3.4 Laser cooling for real atoms

This outline of the mechanisms involved in laser cooling condenses many years of ded-

icated research into a few pages, and it is worth noting the huge significance of these

major advances. This was recognised by Steven Chu, Bill Phillips and Claude Cohen-

Tannoudji being awarded the 1997 Nobel prize “for development of methods to cool

and trap atoms with laser light”. A MOT in some form is used in nearly every cold

atoms experiment in the world.

The above arguments are most accurate for a two-level system, but in reality we have

all of the hyperfine levels to deal with. However, atoms excited to |F ′=3〉 decay only

to |F=2〉, so using light near the |F=2〉 → |F ′=3〉 transition causes the atoms to cycle

between these two states. If an atom happens to fall out of this cycling (or ‘cooling’)

transition we also require light near the |F=1〉 → |F ′=2〉 ‘repumping’ transition to

eject the atom from |F=1〉.
87Rb nicely adheres to this picture with its large hyperfine splittings, where the
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Figure 2.15: Simple scheme for a magneto-optical trap for a singlet ground state and triplet
excited state. As the atoms move away from the centre the Zeeman shift tunes them towards
resonance with the restoring beam and out of resonance with the opposite beam producing a
net restoring force. σ± polarised light works on the ∆m = ±1 transition.
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Figure 2.16: Extension of the MOT principle to three dimensions. The reversal of the field
direction from the radial direction to the axial direction (with respect to the quadrupole coils)
requires that the beam polarisations also be reversed. The beams are red-detuned from the
cycling transition in order to both cool and trap the atoms. In a real system some repumping
light must also be present to avoid pumping the atoms into a dark state.
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2.4 Laser system

force on the atoms is provided by the cooling light, while just a little repumping light

is needed to compensate for the low decay rate to the lower ground state. As such the

repumping light can just be sent in as a single separate low-intensity beam while the

cooling light must have the signature six-beam geometry.

Conversely, the small splitting of the 39K F states means that if we detune the

cooling beam as required for laser cooling we actually bring it closer to resonance with

the non-cycling transitions. Pumping into the |F = 1〉 state occurs at a rapid rate. The

repumping light must therefore be about as intense as the cooling light, be detuned

from the repumping transition and must be counter-propagating as it now provides a

considerable amount of the force. ‘Cooling’ and ‘repumping’ in this scenario start to

lose meaning, but will continue to be used for descriptive convenience. In fact it has

been neatly demonstrated that a 39K MOT may be formed by using only cooling light

on the horizontal axes and only repumping light on the vertical axis [54].

A more detailed discussion of the properties of the MOT setup as used in our

experiments will be given in Chapter 3. Now we know what laser frequencies are

required for laser cooling we just need a way to reliably produce them.

2.4 Laser system

It is advantageous that today the laser frequencies required for the laser cooling of

rubidium and potassium are accessible by diode lasers which are simple to maintain

and operate. The basic principle relies on a high-band-width gain medium (laser diode)

in combination with an external diffraction grating. The combination of the medium

gain, the diode internal cavity, the external cavity between the grating and the back of

the diode and the grating profile itself produces high gain at a single frequency with

a line-width smaller than the natural line-widths of alkali atoms (Fig. 2.17). The

particular lasing mode is selected by tuning the feedback from the grating via its angle,

while we may scan the frequency continuously by modifying the length of the external

cavity via a piezoelectric transducer (piezo). There is a limit to the tuning range as

the laser will eventually ‘mode-hop’ to the adjacent external cavity mode. This mode-

hop-free tuning range is typically up to around 10 GHz (roughly restricted by the mode

spacing of the external cavity). The temperature and laser current are used to tune

where the mode hops occur, affecting the internal cavity modes. Once the laser is tuned

near its designated frequency the piezo voltage is modulated to scan the laser frequency

(used for locking the laser frequency as discussed below).

Standard diode lasers at our required frequencies produce up to ∼100 mW of power.

Given the losses inherent in AOMs, fibre-coupling, reflection off mirrors etc. this is be-

low what we require to have enough cooling light at the MOT cell, so tapered amplifiers

(TAs) are used to boost the power. These contain an amplifying chip with a tapered

gain region. The internal modes are controlled by the coupling of a low-power ‘seed’
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Figure 2.17: Guide to the frequency scales of the gain profiles of the features that make up a
diode laser. The grating profile can be shifted for coarse tuning of the emitted laser frequency,
while the external and internal modes can be modified for fine tuning as discussed in the text.

laser (i.e. ∼10 mW beam from a diode laser) so the fine line-width is maintained while

allowing amplification to over 1 W of laser power.

The lasers in our system were bought with all the necessary current and temperature

regulators and piezo controls, plus the electronics for frequency locking in a feedback

loop (§2.4.2). Optical isolators are fitted in every laser which, via their main compo-

nents of a Faraday rotator and a polariser, vastly suppress unwanted feedback into the

optical cavity.

2.4.1 Saturated absorption spectroscopy

The laser frequencies required for laser cooling, optical pumping and imaging of atoms

must be accurate to the MHz level, and are generally in the vicinity of the hyperfine

transitions of Fig. 1.5. A natural course of action therefore is to somehow lock the

laser frequencies directly to the hyperfine features of the relevant atomic spectra. We

can observe the absorption of light by an atomic vapour, but in order to discern the hy-

perfine features the thermal broadening due to the Doppler effect1 must be suppressed.

Typically this is achieved via saturated absorption spectroscopy.

A typical saturated absorption setup is shown in Fig. 2.18. The transmission of

a weak ‘probe’ beam is recorded by a photodiode and produces the expected broad

absorption signal as the frequency of the laser is scanned. When a strong counter-

propagating ‘pump’ beam is introduced at the same frequency there is generally no

effect, as atoms travelling at a general velocity v (along the beam axis) will not be on

1The thermal broadening produces a feature ∼ 1 GHz in width, making it impossible to observe the
underlying peaks of ∼ 6 MHz line-width.
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Figure 2.18: Example of a saturated absorption spectroscopy setup. In this case a half-wave
(λ/2) plate is used to adjust the relative strength of the transmitted and reflected components
from a polarising beam-splitter (PBS) cube, forming the probe and pump beams respectively.
The transmission of the probe beam through the vapour cell is recorded by a photodiode.

resonance with both beams simultaneously. However, atoms travelling at v = 0 will

be resonant with both beams when the laser frequency matches an atomic transition.

In this case the stronger pump beam promotes many of these atoms to the excited

state and indeed may cause atoms to be pumped into a ‘dark’ ground state. The

consequent reduction in the absorption of the probe beam is observed as a sharp peak

in transmission to the photodiode.

In the case of 87Rb both the ground and excited hyperfine states are split well enough

to be easily resolved. Considering just one of the ground states, this mechanism would

lead to the observation of three peaks for, say, the |F = 2〉 → |F ′ = 1, 2, 3〉 transitions.

However, when the laser frequency is exactly half way between two transitions ω1 and

ω2, atoms travelling at v = ±(ω1 − ω2)/2k will again be resonant with both beams

simultaneously, so three strong ‘cross-over’ peaks are seen bisecting the three direct

transition peaks. This is shown in Fig 2.19 a, where the black line shows the saturated

absorption spectrum while the red line shows the Doppler broadened spectrum observed

when the pump beam is blocked. The linewidth of the six observed peaks is around

16 MHz, not far off the natural lifetime broadening of ∼ 6 MHz. The mechanisms

producing the spectrum are shown schematically in Fig. 2.20.

The small hyperfine splitting in 39K leads to a different picture. The lower state

splitting is small enough to be spanned by the Doppler broadening, while the upper

state splitting is so small that even with saturation spectroscopy it is difficult to resolve

the structure. The six peaks of the |F = 2〉 → |F ′ = 1, 2, 3〉 transition that are so clear

in 87Rb are condensed into a single peak in 39K, peak i of Fig. 2.19 b. Another merged

peak (iv) is seen for the |F = 1〉 → |F ′ = 0, 1, 2〉 transitions, while we also see a

deep dip in transmission between the two. This results from a similar argument to

the cross-over peaks, where now we consider the case where we have two ground states

and a single upper state. In this scenario, when the laser frequency bisects the two

transition frequencies there is again a velocity class of atoms for which both the probe

and the pump beams are resonant. However, this time the pump beam acts to pump

atoms back into the complementary ground state (much like the repumping beam in the
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Figure 2.19: Saturated absorption spectra for the D2 transitions of 87Rb and 39K. The
saturated spectra are shown in black, Doppler broadened versions in red and the difference
between the two in blue. a Transitions from the F = 2 ground state of 87Rb. Peaks i, iii and
vi are direct transitions to the F ′ = 1, 2 and 3 excited states respectively, the rest being the
corresponding cross-over peaks. The x-scale shows the frequency difference in MHz from the
F = 2 to unperturbed upper state transition. b Full spectrum for the D2 line of 39K. Peaks i
and iv are the conglomerated transitions from the F = 2 and F = 1 ground states respectively.
The crossover dips ii and iii are to the F ′ = 1 and F ′ = 2 upper states respectively. To
accentuate the features the spectrum was taken using a vapour cell that was heated to 30 ◦C,
but we have not found it necessary to heat the cell when locking our laser. The small residual
narrow features in the Doppler broadened profile are likely due to reflection of the probe beam
in the system. The x-scale shows the frequency difference in MHz from the unperturbed D2

transition.

MOT discussed later), increasing the absorption of the probe beam. We can actually

just make out two inverted peaks in Fig. 2.19 b, which correspond to the F ′ = 1 and

F ′ = 2 upper states, being the only two states accessible to both lower states by the

standard dipole transition selection rules.

2.4.2 Frequency locking of lasers

The photodiode in the saturation absorption spectroscopy setup provides us with a

signal that is either at a local maximum or minimum when we are resonant with one

of the hyperfine transitions or one of the cross-over transitions. It is then a relatively

straight-forward task to implement a feedback mechanism to lock the laser to one of

these frequencies. We use cross-over resonances as they provide the strongest signal.

The principle relies on applying some low amplitude jitter to the laser frequency

and comparing the photodiode signal either side of the central frequency. For example,

if we are locking the laser to a peak the signal just either side of resonance will be

lower than the central signal. When multiplied by the wave-form of the jitter this will
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Figure 2.20: Mechanisms producing the features of saturated absorption spectroscopy in the
case of a single ground state and two excited states, as seen for 87Rb. a For general atom
velocity v the pump has no effect on the probe beam and the Doppler broadened absorption is
seen. b For v = 0 both beams are resonant with the same transition when the laser frequency
ω is equal to one of the transition frequencies ω1 and ω2. Atoms absorb light from the pump
beam that would otherwise absorb light from the probe beam and the transmission of the probe
beam is consequently increased. c For v = ±(ω1−ω2)/2k each beam is resonant with a different
transition when ω = (ω1 + ω2)/2. As they share the same ground state a peak in probe beam
transmission is again observed.
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Figure 2.21: Mechanisms producing the features of saturated absorption spectroscopy in the
case of a single excited state and two ground states, as seen for 39K. For the cases a and b
the situation is much the same as in Fig. 2.20 a and b. c For v = ±(ω1 − ω2)/2k each beam
is resonant with a different transition when ω = (ω1 + ω2)/2. In this scenario the pump beam
replenishes the ground state of the probe beam transition, causing an increase in absorption
such that a dip in the transmission is observed.
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average to zero over a period. If, however, we are slightly above resonance the signal

will be lower for positive jitter than for negative jitter, providing a negative signal from

the periodic average once multiplied again by the jitter wave-form. This gives a signal

proportional to the gradient of the spectroscopy signal. This signal is fed back to the

laser and the external cavity is modified to return the frequency to resonance.

In our system we apply the high frequency jitter to the laser itself by oscillating the

cavity length. As long as the amplitude is below the required line-width this doesn’t

cause a problem. A lock-in regulator extracts the slope of the signal and we can adjust

the proportional/integral/derivative (PID) components to optimise the stability of the

lock.

2.4.3 Required frequencies

The need for cooling and repumping light for the MOT in the vicinity of the |F=2〉 →
|F ′=3〉 and |F=1〉 → |F ′=2〉 transitions, respectively, has already been discussed in

§2.3.4. Elsewhere in the system we need resonant cycling light for imaging the atoms,

and pumping light resonant with the |F=2〉 → |F ′=2〉 transition for when we want to

transfer all the atoms into the |F=2,mF=2〉 state for magnetic trapping. ‘Resonant’

here includes a small Zeeman shift due to the presence of a uniform magnetic guide

field operated to provide a quantisation axis during imaging and pumping. The pump-

ing is achieved by using σ+ polarised light so that once the atoms have entered the

|F=2,mF=2〉 state they will remain there.

Acousto-optical modulators

Having locked our lasers to the cross-over transitions of saturated absorption spec-

troscopy, we must shift the emitted light by tens and hundreds of MHz to reach the

desired final frequencies, which may be done using acousto-optical modulators (AOMs).

These consist of a crystal in which a sound wave is generated by a piezoelectric trans-

ducer. Incident laser light is Bragg diffracted by an angle θ given by sin θ = mλl/2λs,

where λl and λs are the wavelengths of light and sound respectively and m is the

diffraction order. The frequency of the sound νs also Doppler shifts the diffracted

beam, altering the frequency of the light to ν ′l = νl + mνs. The diffraction efficiency

into the first order can be varied from almost 0 to upwards of 90% by varying the

power of the acoustic waves. This makes AOMs additionally useful as fast switches;

the diffracted light can be turned off in the time it takes a sound wave to travel the

width of the laser beam, typically under 100 ns.

As the angle of beam deflection depends on the frequency shift of the AOM, we need

to use a double-pass configuration in order to dynamically change the laser frequency

without losing beam alignment. This involves placing an AOM at the focal point

between two collimating lenses and reflecting the diffracted beam back through the

AOM as shown in Fig. 2.22. The beam is diffracted a second time, acquiring a total
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Figure 2.22: AOM in double-pass configuration. Identical lenses a focal length either side
of the AOM ensure that as νs varies the return beam retains its alignment. Retro-reflection
through a quarter-wave plate rotates the polarisation so that the frequency-shifted beam may
be separated from the incident beam path by a PBS cube. Irises are used to block unwanted
diffraction orders

frequency shift of 2mνs and returning along the original beam path. This beam can be

separated from the original beam at a PBS cube by inserting a quarter-wave plate before

the retro-reflection mirror, so that the polarisation of the two beams are orthogonal.

In general the diffraction efficiency is peaked at a particular frequency that depends on

the AOM in question, such that shifting the frequency alters the power of the resultant

beam. However, using the double-pass configuration as part of the laser-lock setup

allows frequency control with no power loss from the main beam, so this method is

used for most lasers in our system.

The AOMs in our system are from Crystal Technology and AA Opto-electronic

and are controlled by drivers designed and built in-house. The AOM drivers centre

on a voltage-controlled oscillator (VCO) which outputs a voltage-dependent frequency,

the power being adjusted separately by means of a voltage-variable attenuator. The

design allows frequency and power control both externally from a supplied voltage

and internally via control of chassis-mounted potentiometers. Fast-switching with a

TTL signal is also available. The radio-frequency components in the drivers are from

Mini-circuits.

Table 2.4 summarises the laser lock points (the saturated absorption features used

for frequency stabilisation) and AOM frequency shifts used to get to the final frequen-

cies.

2.4.4 Laser table summary

The entire experiment is carried out on two separate optical tables, designated the laser

and vacuum tables. All of the lasers and AOMs are laid out on the laser table to be

isolated from the vibrations caused by the translation stage. Only three actual master

lasers are used, one for potassium (where the ground-state hyperfine splitting may be

bridged using AOMs) and two for rubidium. Specifically, we use a Toptica photonics

DL Pro laser for potassium, while a DL 100 is used for the rubidium repumping light

and a TA 100 (actually a combination diode laser and TA in one box) for the rest. The

master lasers are based on the Littrow configuration.

Both the cooling and repumping light for potassium need to end up at high in-
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Function Master Locking line AOM shift (MHz) Resultant light

39K

Cooling DL Pro |F=1-2〉→|F ′=1〉
2× (70.5→ 95.5) |F=2〉→|F ′ = 3〉
−2× (185→ 215) −89→+21 MHz

Repumping DL Pro |F=1-2〉→|F ′=1〉
2× (70.5→ 95.5) |F=1〉→|F ′ = 2〉
+40 −50→ 0 MHz

Imaging DL Pro |F=1-2〉→|F ′=1〉 2× 95− 2× 195 |F=2〉→|F ′ = 3〉
Pumping DL Pro |F=1-2〉→|F ′=1〉 2× 95− 2× 206 |F=2〉→|F ′ = 2〉

87Rb

Cooling TA 100 |F=2〉→|F ′=2-3〉
2× (83→ 108) |F=2〉→|F ′ = 3〉
−83 −50→ 0 MHz

Repumping DL 100 |F=1〉→|F ′=1-2〉 +78 |F=1〉→|F ′ = 2〉
Imaging TA 100 |F=2〉→|F ′=2-3〉 2× 100− 67 |F=2〉→|F ′ = 3〉
Pumping TA 100 |F=2〉→|F ′=2-3〉 2× 75− 83− 200 |F=2〉→|F ′ = 2〉

Table 2.4: Summary of the laser-lock transitions and AOM shifts used to provide the laser
frequencies used for laser cooling, imaging and optical pumping. The form “|F=1-2〉→|F ′=1〉”
denotes locking to a ground-state crossover feature. Use of an AOM in double-pass configuration
results in an overall frequency shift of 2× νs (all AOM shifts are first order). Note that where
an AOM is used in the spectroscopy setup the light that exits the laser is shifted in the opposite
direction (i.e. a negative frequency shift in the locking setup is counted as a positive frequency
shift).

tensity with the same polarisations, so after the master laser light has been split and

frequency shifted it is recombined on a PBS cube before being rotated and split in two

at another PBS cube such that we end up with two polarised beams each containing

both frequencies. One beam is used for imaging and pumping (requiring relatively little

light) while the other (∼10 mW) beam is used to seed a Sacher Lasertechnik TEC-400

tapered amplifier. Dual seeding means we can’t directly measure the relative powers at

the two frequencies, so a Fabry-Pérot interferometer is used to provide a rough gauge.

This is important as the amplification depends on how well coupled each beam is, and

small imbalances in the coupling leads to larger imbalances in relative output power.

A total power of up to ∼1.5 W leaves the TA.

The rubidium repumping light is produced at a fixed frequency by the DL 100 with

a single-pass AOM in the lock setup, the 80 mW it produces proving to be plenty. The

TA 100 has two output apertures, one for a pre-amplification 10 mW beam, the other

for the amplified beam. The weak beam is used for locking and imaging, while the

amplified beam of around 600 mW is split and shifted for cooling and pumping light.

The light is passed to the vacuum table by means of polarisation-maintaining optical

fibres. In addition to the saturated-absorption spectroscopy components and AOMs

there are several other key components which are briefly discussed below.
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Anamorphic Prism pairs

Typically diode lasers produce elliptical beams (∼3 mm× 1 mm for the Toptica master

lasers) which are unsuitable for efficient fibre coupling. Anamorphic prism pairs are

used at the outputs of the diode lasers which are used to magnify or shrink the beam

in one dimension resulting in a near-circular profile. The exact magnification can be

adjusted by the prism angles so can conveniently be adjusted to suit each particular

laser.

Mechanical shutters

Although fast switching of light is available using AOMs there is always a small fraction

of light diffracted away from the zeroth order. Sometimes it is necessary that absolutely

no near-resonant light reaches the atoms and mechanical shutters must be used. These

act more slowly than AOMs (depending on the shutter speed and once again on the

beam width) and must be triggered in advance so that the shutter reaches the beam at

the desired time if timing is critical. However, they have the advantage of blocking all

light. The efficiency of an AOM is unstable when turned on from ‘cold’, so it is best

to keep them on for the majority of the time. A mechanical shutter can be used to

block the light while the AOM is ‘kept warm’, allowing for higher power stability when

light is needed once more. The shutters are controlled via TTL signals and mounted

on rubber bases to suppress mechanical vibrations that can affect the laser frequency

lock.

Dichroic wave plate

The two-species MOT requires beams containing light for both species with the same

polarisation. To achieve this we combine orthogonally polarised beams at a PBS cube

before using a dichroic wave-plate to rotate the polarisation of just the potassium light.

This wave plate, manufactured by LENS-Optics, is precisely machined such that it acts

as a 27 + 1/2 wave plate for light at 766.7 nm and a 27 wave plate for 780.2 nm light.

Subsequently only zero-order wave plates are used to keep the rubidium and potassium

polarisation matched.

The entire laser table optical configuration is displayed in Fig. 2.23, tying in all the

above component pieces discussed above. All of the optics are anti-reflection coated to

minimise power loss through the system. For clarity, the central AOM frequencies are

quoted because the operating frequencies change throughout the experimental sequence

(whether the shift is positive or negative is indicated).
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2.4.5 Fibre-port cluster

In order to split the cooling and repumping light into the six beams required for the

MOT we use a two- to six-way fibre-port cluster from Schäfter+Kirchhoff. This is an

enclosed cage-mounted system, providing excellent alignment stability, as required for

the coupling between the input and output optical fibres. The combined rubidium and

potassium light and the rubidium repumping light are collimated at two input couplers.

PBS cubes and rotatable zero-order half-wave plates are used to first combine and

then divide up the two beams as shown in Fig. 2.24. PBS cubes produce near-pure

polarised light in transmission, but the reflected light contains a small but significant

fraction of the incorrect polarisation. Linear polarisers are therefore used to clean up

the polarisation of the three beams which undergo reflection at the last cube they

encounter.

This imperfection of the PBS cubes means it is also impossible to balance the output

beam powers with respect to both inputs, but it may be done for just one or the other.

The force-exerting light can therefore be split into three balanced pairs, while various

amounts of rubidium repumping light ends up in each beam. The light is coupled into

six fibres which transport the light to the required positions on the vacuum table.

2.4.6 Optics around the MOT cell

Each MOT beam (now containing all four frequencies) is allowed to freely expand from

the end of an optical fibre before being collimated by a lens, producing beams 3 cm in

diameter. To produce pure circular polarisation each beam then passes through linear

polarising sheet and a zero-order quarter-wave plate. All of these components are cage

mounted for stability and to be sure that the expanding beam and lens share a common

axis. Two 2′′ steering mirrors are used to allow adjustment of the angle and position

of each beam at the MOT cell, finally reproducing the picture of Fig. 2.16.

2.5 Magnetic transport

In order to transport the atoms to the science cell we use the tight magnetic confinement

of the quadrupole field produced by the pair of transport coils that were used at low

current in the MOT. As mentioned before the coils are mounted on a Parker translation

stage to allow computer-controlled motion along the vacuum system axis. The coils are

clamped tightly in place and held on a set of coil mounts that were manufactured on

site to our design.
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Figure 2.24: Representation of the Schäfter+Kirchhoff two- to six-way fibre-port cluster. 1%
of each input beam is split off to monitor input power at a photodiode. Though the system is
enclosed it is possible to rotate the wave plates in order to obtain the required power balance
at the outputs.

2.5.1 Coil holder design

The coil holders are formed from thirteen separately machined aluminium pieces which

are bolted together with M6 screws as displayed in Fig. 2.25. The base is screwed

directly to the translation stage which comes with an array of threaded holes for this

purpose. The arms are the largest pieces and are 25 mm thick for high rigidity, as

the coils are held far away from the translation stage base. This is to allow plenty of

room for mounting optical elements around the science cell. The vertical struts are far

enough away that when the coils are at the MOT cell the 45◦ horizontal beam may

pass by.

The coils themselves are held in clamps comprising four pieces each. The two plates

on the inner side are fixed solidly to the arms, fixing the coil separation. The two outer

plates clamp onto the inner plates to hold the coils in place. There is a gap in each clamp

to reduce eddy currents in the mounts. Grooves in the support arms provide channels

for the copper tubing to travel down to the water cooling and power connections.

As the tubes for water-cooling and the high-current power cables need to travel up

and down the track with the mount an ‘energy chain’ (resembling caterpillar track)

from Igus is used to keep everything tidy; serious damage could be caused by the

cables snagging on anything as they are pulled along by the powerful translation stage.

The power cables and tubes for water-cooling must be suitably flexible to cope with
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Figure 2.25: Transport coil holders. The holders are made from thirteen separate pieces
of aluminium, held together by screws and bolted directly to the translation stage. The coil
separation is fixed to just clear the vacuum system during transport, with the outer plates
clamping down to securely hold the coils. The water and electrical connections are mounted off
the side of the structure. The arrow shows the direction of motion when the translation stage
is operated.

the small bending radius and repeated flexing during every experimental run. The

assembled transportation system is shown in Fig. 2.26.

2.5.2 Translation stage

The Parker 406XR series translation stage consists of a carriage (to which the coil

mount is attached) mounted on a ballscrew drive which is driven by an in-line syn-

chronous servo motor. The lead of the ballscrew thread is 25 mm while the motor

rotates at a maximum rate of 6000 rpm, giving a maximum speed of 2.5 m s−1. The

track position is monitored by a Renishaw RGH24 series digital linear non-contact op-

tical encoder with 0.5µm resolution. Manual limit sensors are included to stop the

track in the event of a control error. The stage allows for 900 mm of travel and is very

robust, taking a load of up to ∼ 6000 N and a torque of up to ∼ 270 N m, far more than

we actually subject it to. The repeatability of the track end point is given as ±3.0µm.

The track is controlled by a Parker Compax3 servo drive, computer-operated via

RS 232 connectors. We found that it was important to position the servo drive far from

the other electrical components of the system, due to the emission of radio-frequency

noise that affected the production of condensates. This noise has been noted elsewhere

[41], though in this case no detrimental effects were seen. Similarly we have found

it essential to de-energise the motor while the atoms are in the science cell. These
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2.5 Magnetic transport

Figure 2.26: The transport coils in position around the MOT cell. The coil holders are
mounted to the translation stage and travel towards the observer to reach the science cell. The
Igus ‘energy chain’ used to shepherd the cables can be seen in the bottom right-hand corner of
the picture.

precautions vastly increased the reproducibility of condensates in the system.

2.5.3 Atom transportation

The process of moving the track back and forth during each experimental run is ac-

complished by fixing the track motion parameters (i.e. maximum speed, acceleration

and jerk) and setting the two target end points. The track can then be operated by

using the ‘±jog’ commands by applying a voltage to the correct pin of the servo drive,

prompting the track to move in the designated direction. The coils travel a distance of

740 mm with a maximum speed of 0.5 m s−1, acceleration of 5 m s−2 and jerk of 50 m s−3.

This takes a little under two seconds end-to-end.

The maximum available current of 200 A is passed through the transport coils dur-

ing translation to confine the atoms as tightly as possible. The ‘trap acceleration’

gFmFµBB
′/m is ∼ 50 m s−2 for rubidium (∼ 110 m s−2 for potassium) at this current,

much larger than the maximum acceleration of the track of 5 m s−2, so heating due

to the macroscopic trap motion is not an issue. It is possible for the more energetic

atoms to reach the sides of the vacuum chamber as they are transported through the

minimum aperture of 10 mm, causing cooling and atom loss, which will be quantified

in the following chapter.

2.5.4 Majorana spin-flips

Another possible source of heating comes from what are known as Majorana spin-flips.

The problem with the linear quadrupole trap created by the transport coils is that there
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2.6 Quadrupole Ioffe-configuration trap

is a magnetic zero at the centre. As described in §1.4.2, only atoms with gFmF > 0

can be trapped at low magnetic fields, and will remain trapped as long as they move

adiabatically. However, at the centre of the trap the magnetic field direction rapidly

changes and the spin of an atom moving through the centre will have a good chance

of becoming mis-aligned with the field direction (undergoing a ‘spin-flip’). Though the

region this occurs in is relatively small, the colder atoms spend more time near the

centre and so are preferentially lost, causing heating as well as atom loss. This loss rate

is estimated in [55] as

ΓM ≈ 7.4
~
m

(
µFB

′

kBT

)2

, (2.19)

where m is the atomic mass. ΓM ≈ 0.15 s−1 for rubidium in our trap at 100µK, so for

the short time spent in the pure quadrupole field this process is not a major issue. As

the atoms get colder this becomes an overwhelming problem though, preventing the

continued cooling to the quantum degenerate regime in such a trap.

2.6 Quadrupole Ioffe-configuration trap

The quadrupole Ioffe-configuration (QUIC) trap [56] gets around the problem of Ma-

jorana spin-flips by eliminating the magnetic zero altogether, having a magnetic min-

imum at some finite field strength. This comes at the expense of the sharp trapping

confinement and simplicity of a quadrupole trap, but is still relatively straightforward

to implement. In fact it brings together the three basic concepts discussed in §2.2; the

field from a single coil, the quadrupole field and a bias field. The QUIC trap geometry

with the directions of current flow is illustrated in Fig. 2.27, where the origin of the

coordinate system is located at the centre of the quadrupole coils. The quadrupole

coils ideally produce a purely linear field

Bquad = B′


x

y

−2z

 (2.20)

as previously discussed, where B′ is now the total field gradient along the weak axes.

The so-called Ioffe coil is located on the x-axis and produces an axial field that opposes

the quadrupole field. For a non-zero trap minimum to exist somewhere along the x-axis

there must be a point xmin at which

dBIoffe
x

dx
= −B′ (2.21)

and hence
dBIoffe

y

dy
=

dBIoffe
z

dz
=

1

2
B′ . (2.22)
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z 

y 

x 

Figure 2.27: Formation of a QUIC trap. The vertical coils with opposing senses of current
flow (indicated by the arrows) provide the quadrupole field while the single horizontal Ioffe coil
provides the requisite field curvature. The rectangular bias coils can be used to independently
tune the field offset. The resultant trap minimum lies somewhere along the x-axis, about which
the trap displays rotational symmetry.

It immediately follows that the total field gradients in the y and z directions at this

point are (3/2)B′ and −(3/2)B′ respectively. Defining the field offset at this minimum

to be −B0 and the field curvature produced by the Ioffe coil to be −(1/2)B′′ (where

B0 and B′′ are positive to comply with the chosen coordinate system), the total field

near the minimum may be written as

B =


−B0 − 1

2B
′′(x− xmin)2

3
2B
′y

−3
2B
′z

 . (2.23)

The bias field can be applied to decrease B0, the relevance of which will shortly become

apparent. The field amplitudes along x, y and z are then simply

|B|x = B0 +
1

2
B′′(x− xmin)2 (2.24)

|B|y = B0

[
1 +

(
3

2

B′

B0
y

)2
]1/2

≈ B0 +
1

2

(
3
2B
′)2

B0
y2 (2.25)

|B|z = B0

[
1 +

(
3

2

B′

B0
z

)2
]1/2

≈ B0 +
1

2

(
3
2B
′)2

B0
z2 . (2.26)

The identical forms of (2.25) and (2.26) gives the trap its fundamental circular sym-

metry about the axis of the Ioffe coil as illustrated in Fig. 2.27. Using the expression

for the Zeeman shift (1.36) we can obtain expressions for the axial and perpendicular
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trapping frequencies

ωax =

√
µFB′′

m
(2.27)

ω⊥ =

√
µF
(

3
2B
′
)2

mB0
. (2.28)

The trapping potential is actually modified slightly by the Earth’s gravitational field,

but this description provides a good estimate of the true values. The perpendicular

trapping frequencies diverge as B0 → 0 which is why it is useful to be able to directly

tune this value with the bias coils. B′′ scales as IIoffe/a
3
Ioffe [56], hence the tight winding

of the Ioffe coil.

We are able to measure B0 by finding the microwave frequency that removes all

atoms from the trap (see section §2.7.1), while B′ for the transport coils has been cali-

brated using a gauss meter. During normal operation of the QUIC trap they are 5.3 G

and 64 G cm−1 respectively. B′′ is estimated to be 120 G cm−2 from a suitable model

of the Ioffe coil1 (which is constrained by our knowledge of B0 and B′). This predicts

trapping frequencies ωax = 2π × 21(14) Hz and ω⊥ = 2π × 79(53) Hz for potassium

(rubidium). A rudimentary check of the vertical trapping frequencies may be provided

by measuring the difference in ‘sag’ due to gravity ∆z (the distance between the trap

minima) for the two species. Assuming perfect harmonic potentials, the trap minimum

is displaced by a distance g/ω2
z under gravity, where in our case ωz = ω⊥. This gives

the result

ω2
zK =

(
mRb

mK

)
ω2
zRb =

g

∆z

(
mRb

mK
− 1

)
=

g

∆z

(
48

39

)
, (2.29)

which agrees reasonably well with the predicted values. (2.29) typically slightly under-

estimates the actual trapping frequencies due to the real anharmonicity of the magnetic

field.

2.7 Evaporative cooling

Though the temperatures achieved by laser cooling are very impressive it has not yet

been possible to cool far enough at sufficient atomic density to reach quantum degen-

eracy by these processes alone. The suggestion of evaporative cooling as a pathway

to higher phase-space densities was first suggested by Hess in 1985 [57], focussing on

atomic hydrogen. This was applied to alkali atoms by groups at MIT [58] and JILA

[59] in 1994 and indeed subsequently led to the first realisation of alkali atomic BECs

in 1995 [3, 4].

The concept is strikingly simple. Removing atoms with an energy greater than

the atomic average leaves the remaining atoms with a lower average energy. Upon

1The coil may be modelled by assuming all eighteen windings have radius 8.5 mm and are situated
a distance 18 mm from the centre of the quadrupole field.
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a b c d

Figure 2.28: Illustration of the process of evaporative cooling in a harmonic trap. The trap
depth is gradually lowered from a to d such that the most energetic atoms escape the trap and
the atomic cloud rethermalises at a lower temperature.

rethermalisation the remaining atoms are at a lower temperature. This process can be

repeated to obtain temperatures far below the recoil limit (Fig. 2.28). The obvious

drawback is that atom loss is an integral part of the process. However, evaporation can

be extremely efficient, with phase-space-density growth by three orders of magnitude

commonplace for a drop in number by only a single order of magnitude.

In a simple model as described in [60] the process can be viewed as repeated removal

of the high-energy tail of the Maxwell-Boltzmann energy distribution1 and rethermal-

isation. The removal of atoms is achieved by restricting the depth of the trapping

potential to some finite value. This is characterised by the truncation parameter η,

giving trap depth ηkBT . As long as η is large the treatment that the system is close to

equilibrium is valid. The atoms that are lost from the trap take away an average energy

(η + κ)kBT , where κ is a small number usually somewhere between 0 and 1. Thus for

large η a rough approximation can be made that κ is negligible. For the temperature to

decrease then we must have ηkBT greater than the mean atomic energy (3/2 + δ)kBT ,

where the mean kinetic energy is (3/2)kBT in three dimensions and the mean potential

energy is δkBT , and it is easily shown that δ = 3/2 for a harmonic trap. The rate of

energy loss is therefore simply given by

dE

dN
= ηkBT , (2.30)

while the total energy of the harmonically trapped sample is given by

E = 3NkBT . (2.31)

Equating (2.30) with the derivative of (2.31) with respect to N leads us to the temper-

ature variation with N ,

T ∝ N (η−3)/3 , (2.32)

showing that for temperature reduction we indeed require η > 3. The volume of a

harmonically trapped sample V is proportional to T 3/2, which then directly gives us

1For the most part evaporation is carried out in the regime where this is still a reasonable approxi-
mation.

68



2.7 Evaporative cooling

Quantity (∝ Nx) Exponent, x

Atom number, N 1

Temperature, T (η − 3)/3

Volume, V (η − 3)/2

Density, n (5− η)/2

Phase-space density, D = nλ3
T 4− η

Elastic scattering rate, Γel = nσv (6− η)/3

Table 2.5: Scaling laws for physical quantities (in the spirit of [60]) in terms of truncation
parameter η for a harmonic trap in the simple model described in the text. Within this model
it is clear that for evaporative cooling to be successful (i.e. for phase-space density to increase)
η must be greater than 4, while to be in the ‘run-away’ regime (i.e. for the elastic scattering
rate to increase during evaporation) η must be greater than 6.

the number dependence of all other relevant physical quantities in the system as given

in Table 2.5.

More important than the temperature scaling is that of the phase-space density,

and also that of the elastic scattering rate to maintain the evaporation process. The

above model suggests that for η > 6 the elastic scattering rate increases as N drops, in

what is known as ‘run-away’ evaporation. Of course these values of η are not really very

large, so the model is only used as a guide to the key concepts. A more sophisticated

model [61] gives η > 4.6 for the run-away regime (in the absence of any additional loss

processes). Most cooling procedures operate by keeping η relatively constant, forcing

the evaporation as the temperature drops by reducing the trap depth correspondingly.

This can be achieved in a magnetic trap by applying time-varying RF or microwave

frequency radiation (discussed later), and in optical traps by reducing the optical power.

The above model suggests that the efficiency of evaporation has no upper bound,

as in the commonly cited example of waiting for a single particle to have the entire

energy of the system. But there is a trade-off between cooling efficiency and evaporation

timescale, while inherent loss mechanisms (such as collisions with the background gas)

limit the time we may take over evaporation. The key requirement in a real system then

is that the elastic collision rate Γel be much higher than the loss rate Γloss of the sample.

The value of η available experimentally is constrained by the ratio α = Γel/Γloss . If α

is small we can no longer go to high η as the trap losses become overwhelming. The

quantity α may be added into evaporation models to include trap losses as described in

[60], where it is seen that the minimum value of α for run-away evaporation1 is ∼ 100

for η = 6, rising to ∼ 300 for η = 8. Note that the value of Γloss will change during

evaporation; for example, the three-body inelastic collision rate scales strongly with

1This minimum value is a factor 2
√

2 lower than given in [60] as there the elastic collision rate was
defined for the trap centre rather than the cloud as a whole.
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2.7 Evaporative cooling

density.

Considering the direct evaporation of rubidium alone in the QUIC trap in our

experimental setup, α is large (> 1000) owing to the long trap lifetime and the large

scattering cross-section, allowing highly efficient evaporation at high η. To quantify the

efficiency of the evaporation process we introduce the local quantity

γ = −d(lnD)

d(lnN)
(2.33)

where D = nλ3
T is the phase-space density. So in the simple lossless model γ =

η − 4. Alternatively, a global value γtot is given by taking the difference between final

and initial conditions rather than the derivative. Typical experimental values of γtot

for direct evaporation are in the range 1 to 3 [13, 60, 62, 63]. This is fairly species

dependent; for example, evaporation of 87Rb usually gives a value closer to 3 due to

its favourable scattering length. This is a good benchmark for comparison with our

results.

It is also shown in [60] that the rate of atom loss due to evaporation in the limit of

large η is

Γev =
ηe−η√

2
Γel . (2.34)

If we keep η and Γel constant (for forced evaporation on the cusp of the run-away

regime) then, in the absence of losses, the atom number decays exponentially during

evaporation with time constant 1/Γev. As T ∝ Nx the sweep of the trap depth should

also be exponential to maintain constant η with a time constant ∼ 1/(xΓev). Again

this may be used only as a rough guide, though most experiments (including ours) use

an exponential ramp of the trap depth with an experimentally determined optimum

time constant.

2.7.1 Sympathetic cooling

When direct cooling of a particular species is difficult (as for 39K) we may make use of

a second to act as a coolant [64]. Both species are loaded into a trap but only one is

selectively evaporated, while interspecies collisions allow the other to be sympathetically

cooled (Fig. 2.29). This process breaks down once the atom numbers of the two species

are comparable, so efficient sympathetic cooling requires a large initial ratio of coolant

to load. Ideally, no atoms are lost from the load species while the phase-space density

is greatly increased, so it is possible to create large condensates despite the relatively

low initial numbers in the trap. Naturally, losses do occur in real systems, and the

sympathetic cooling efficiency can be characterised by γtot for the load species. The

larger the initial load the lower the cooling efficiency will be [63].

Considering for a moment the situation at the start of sympathetic cooling in the

QUIC trap, we can estimate the elastic scattering rate for potassium atoms colliding
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a b c d

Figure 2.29: Sympathetic cooling in a harmonic trap. The trap depth is lowered as in Fig. 2.28
for the coolant species (black), while the trap depth remains far greater than the temperature
of the load species (red). As the temperature of the coolant is reduced by evaporation the load
is cooled by inter-species elastic collisions, while no load atoms are intentionally removed. The
load is thus cooled without significant reduction in atom number.

with rubidium atoms to be given by

ΓK-Rb = n̄RbσK-Rbv̄K-Rb . (2.35)

This quantity is important, as it gives the limiting rate of thermalisation of potassium

during sympathetic cooling. Here n̄ = n(0)/(2
√

2) is the average density in a harmonic

trap, σK-Rb = 8πa2
K-Rb is the inter-species scattering cross-section and

v̄K-Rb =

√
8kB

π

√
TK

mK
+
TRb

mRb
(2.36)

is the average relative velocity between atoms of different species. At the start of

our evaporation TK > TRb and in fact TK always lags a little throughout the evap-

oration process as the elastic scattering rate for collisions between rubidium atoms

ΓRb ≈ 5 ΓK-Rb when TK ≈ TRb. For our experimental parameters we find that ini-

tially ΓK-Rb ∼ 4 s−1 owing to the weak trapping in the QUIC trap and the low inter-

species scattering length aK-Rb = 36 a0 [65]. However, our vacuum is good enough that

Γloss ∼ 1/300 s−1, allowing suitably long evaporation sweeps for TK to stay close to

TRb (important for maintaining the spatial overlap between the two species for cross-

thermalisation). A more detailed discussion of thermalisation in mixtures of ultracold

gases may be found in [66].

2.7.2 Thermalisation

The constant unavoidable loss of atoms from the trap means that the system is never

fully in equilibrium. However, as long as α � 1 the system is in what is termed

quasi-equilibrium, where the thermal distribution is a very good approximation. Ther-

malisation of the cloud is usually taken to require ∼ 3 elastic scattering events per

particle [67]. Extreme scattering cross-sections can lead to conditions where thermal-

isation is no longer able to keep up with atom loss, and the system is deemed to be

out of equilibrium. Small cross-sections reduce thermalisation below the collision rate
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2.8 Crossed optical dipole trap

with the background vapour, while large cross-sections drive the three-body loss rate

above the elastic scattering rate. Both of these regimes are accessible with a Feshbach

resonance, so it is well to be aware of the contingency.

2.7.3 Microwave antenna

When evaporating a single species it is common to use resonant RF radiation to transfer

high energy atoms into untrappable states (the process is similar to the state transfer

described in §2.9). Signal generators and amplifiers spanning the kHz to tens of MHz

range required for RF evaporation from standard magnetic traps are readily avail-

able. However, the Zeeman substate splitting for potassium and rubidium are almost

identical, so it is impossible to use RF evaporation for sympathetic cooling as forced

evaporation would also occur for potassium. The large hyperfine splitting of 6.8 GHz

for the rubidium ground states, though, makes the use of microwaves a viable option, as

frequencies around this point are far off resonance for potassium. In our experiments,

rubidium atoms are transferred from the |2, 2〉 state to the untrapped |1, 1〉 state during

microwave evaporation.

The design of the microwave antenna was undertaken by Igor Gotlibovych [68]. The

relatively short wavelength required (∼ 4 cm) is comparable to the antenna distance

from the atoms, allowing consideration of directional radiation intensity. A free-space

helix antenna was created to maximise the field strength at the atoms. The circumfer-

ence of the helix matches the wavelength at 6.8 GHz and consists of ten loops with a

pitch angle of 13◦. The signal is provided by either of two microwave signal generators:

an HP HP83622A and an Agilent N5183A MXG. A suitable amplifier for 6.7–7.0 GHz

was built to specification by Microwave Amplifiers Ltd., having a saturated output

power of 39.5 dBm (∼ 9 W).

2.8 Crossed optical dipole trap

In order to make use of Feshbach resonances the atoms must be trapped in a purely

optical potential. This may be done by making use of the dipole potential (1.69) as

discussed in §1.4.3. Trapping is achieved by focussing a gaussian shaped red-detuned

beam to a 1/e2 waist size of w0 to create an intensity maximum in space, forming an

optical dipole trap. The Rayleigh range given by [69]

zR =
πw2

0

λ
(2.37)

is generally far greater than the beam waist, so for tight confinement in three dimensions

a second beam is added, crossing the first to form a crossed dipole trap (CDT) as

illustrated in Fig. 2.30.
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2.8 Crossed optical dipole trap

Figure 2.30: Basic two-beam trapping scheme, forming the CDT in our science cell. Crossing
two beams produces tight confinement in three dimensions, as opposed to the single-beam case
where trapping along the axis of the beam is usually relatively weak.

2.8.1 CDT laser

As suggested in §1.4.3 we must try to fulfil the requirements of a low scattering rate and

a large trap depth by balancing the laser detuning with the laser power required. These

parameters also depend on the beam waist of course, but at the time of purchasing the

laser we based our decision on the dipole trap parameters of other research groups. We

settled on a 10 W linearly polarised ytterbium fibre laser from IPG Photonics (YLM-

10-LP-SC) at 1070 nm. The laser is simple to operate given it produces light at a fixed

frequency with a large linewidth of 1.2 nm. The light is collimated at the end of the

10 m long output fibre with a beam diameter of ∼ 5 mm.

Power stability

The beam power stability is important as large long-term drifts alter the trap depth over

time and high frequency modulations cause extra heating in the trap. We therefore

implement a negative feedback loop in order to stabilise the power. We control the

power by passing the light through an AOM and adjusting the acoustic amplitude in

the crystal to vary the power in the first-order diffracted beam. The power in this beam

is monitored by picking off a fraction of the trapping light once it has passed through

the system, deflecting it into a fast photodiode. The voltage signal obtained from the

photodiode is compared with a desired voltage (set by a computer-controlled analogue

channel) by a PID controller [70]. The PID increases or decreases, as necessary, its

output voltage, which is sent to the voltage variable attenuator (VVA) in the AOM

driver. This directly effects the RF power sent to the AOM, completing the loop. The

trapping beam power may therefore be controlled by adjusting the voltage signal sent

to the PID.

The disadvantage of such a scheme is that a fraction of beam power is lost in the
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zeroth order of the AOM which is sent straight to a high-power beam dump. This

fraction is minimised by several measures. Firstly, the beam diameter at the AOM is

closely matched with the active aperture of the AOM (�1 mm and 3 mm× 1.25 mm

respectively), as the rise time may be traded off for beam diffraction efficiency by

increasing the beam diameter. This still gives a rise time of only ∼ 300 ns. Secondly,

the voltage controlled oscillator (VCO) in the AOM driver is sent a fixed voltage that

has been tuned (via adjustment of a trimmer resistor) such that it outputs a frequency of

exactly 110 MHz, the central frequency of the chosen AOM where the highest diffraction

efficiency occurs. Thirdly, the output of the laser is oriented such that polarisation is

90◦ to the AOM mounting plate as required for optimal diffraction efficiency. Finally,

the AOM angle was carefully tuned to be Bragg matched for first order diffraction, the

AOM being mounted on a modified mirror mount to allow simple angular adjustments.

The AOM used is product number 3110-197 from Crystal Technology and was chosen

specifically for the possibility of high diffraction efficiency. The photodiode is a Thorlabs

DET36A/M model which has a large (13 mm2) detection area and 14 ns rise time. The

key components of the AOM driver are shown in Table 2.6, and the PID device was

designed and built by Philip Richman in the lab. The losses in the system mean that

the trapping beam has a maximum power of 7.5 W at the atoms, though we usually

limit this to 7 W to ensure the PID can function properly to provide a stable beam

power.

2.8.2 Forming the trap

An overview of the CDT setup is shown in Fig. 2.31. The laser output coupler is

held securely in a cage mount along with two lenses to form a telescope to obtain the

desired beam diameter for efficient diffraction by the AOM. The zeroth order light is

directed straight into a high-power beam dump, while the first order beam is reflected

off two mirrors onto the optical axis of a second cage system. This contains a PBS

cube to make sure the polarisation is pure, deflecting the orthogonal component of the

Product number Description Supply voltage (V) Control Voltage (V)

ZX95-200-S+ VCO +12/Gnd. ∼ 4 (for 110 MHz)

ZX73-2500-S+ VVA +5/Gnd. 0→12

ZXSWA-2-50DR Switch ±5/Gnd. 0/5

Table 2.6: Key components of the AOM driver used to control the CDT power. All components
are from Mini-circuits. The VCO has a fixed control voltage as the AOM is only used to control
power. The VVA is controlled from an external voltage input during normal operation, but
may be controlled by a chassis-mounted potentiometer during testing. The switch is included
so that the beam may be turned off rapidly via a TTL trigger. An external RF amplifier (Delta
RF LA2-1-525-30) is used to allow all the components to be run off a ±5/12 V power supply
in the driver box.
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light downwards into another beam dump. The two lenses in this cage mount first

expand then focus the beam as is discussed below. A periscope with adjustable mirrors

elevates the beam to the height of the science cell (185 mm above the surface of the

optical table) and allows the beam to be directed into the science cell at 45◦.

To increase the effectiveness of our available optical power we form the CDT in the

so-called ‘bow-tie’ configuration by re-collimating the trapping beam after its first pass

through the science cell, reflecting it off a couple of mirrors and then re-focussing the

beam such that the second focal point coincides with the first. In this way almost the

full beam power is recycled. In our system we cross the beams at 90◦. The transmission

through the science cell is maximised by having the beam p-polarised with respect to

the cell surface for both passes. With this polarisation the transmission is ∼ 96% per

window (recalling that only the outer surface has been anti-reflection coated). There is

no problem with beam interference as the linewidth is sufficiently large that the path

length of the bow-tie section is far greater than the coherence length.

Specialised optics are not required to form the optical dipole trap, owing to the large

beam waists desired (the system is effectively diffraction limited by design). All of the

lenses and mirrors used are broadband anti-reflection coated 1” pieces from Thorlabs.

Tuning the beam waist

When setting up the CDT we wanted the ability to alter the beam waist with minimal

realignment time. We also chose to have the focussing lenses mounted in a cage system

for mechanical stability and to allow simple translation along the optical axis. We were

also constrained by the coil mount around the science cell. The result is that the back

focal length, dBFL, of the lens system must be greater than ∼ 450 mm. This means

that the beam must first be expanded from the 0.5 mm waist required at the AOM,

otherwise the waist at the atoms would end up being > 270µm.

In order to calculate the required lenses and separations in the system we can make

the paraxial approximation and use simple ray transfer matrices to find the angle and

off-axis distance of a ray at the beam waist (ignoring the diffraction limit). The position

and angle of this ray are recorded in the form

x =

(
x

θ

)
, (2.38)

and we sequentially apply to the initial conditions xi the transfer matrices D for travers-

ing a certain distance d along the optical path and L for the advent of a lens of focal

length f , which take the form

D =

(
1 d

0 1

)
and L =

(
1 0

−1/f 1

)
. (2.39)

For the two-lens system illustrated in Fig. 2.32 the final conditions are given by
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Figure 2.31: CDT setup overview. The output of the fibre laser passes through a telescope
resulting in a collimated beam that is size-matched to the active aperture of the 110 MHz AOM.
Zeroth order light is sent directly to a beam dump. The polarisation of the first order light is
purified using a PBS cube, with light of the incorrect polarisation sent to a beam dump below
the cube. This beam is expanded and then focussed by the next lens pair before being raised to
the height of the science cell by a periscope. The focal point lies at the centre of the science cell.
After the first pass the beam is collimated and refocussed for the second pass, crossing itself
perpendicularly. A small fraction of the beam is then split off and sent to two photo-detectors.
One is used in the feedback loop for stabilising the beam power, the other for independent
monitoring of the beam power. The rest of the light is sent to another beam dump.
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θf

xi

d

θi = 0

BFL

f1 f2

w0

Figure 2.32: Two-lens system for producing the desired focal beam-waist w0 for optical
trapping.

xf =

(
xf

θf

)
= DBFLL2DL1xi . (2.40)

The angle of convergence allows us to find the true diffraction limited waist from

w0 =

∣∣∣∣ λπθf

∣∣∣∣ , (2.41)

while setting xf = 0 lets us find the back focal length. This results in expressions for

w0 and dBFL dependent on the initial beam waist xi, the lens focal lengths f1 and f2

and their separation d:

dBFL =
f2(d− f1)

d− f1 − f2
, (2.42)

w0 =

∣∣∣∣λπ f1f2

xi (d− f1 − f2)

∣∣∣∣ . (2.43)

This enables us to find combinations of lenses that produce the desired beam waist

within the constraints of our setup. In our finalised system we use f1 = −50 mm,

f2 = 100 mm and d = 74 mm, giving w0 = 140µm and dBFL = 511 mm. We have found

that using the cage system it is a simple task to modify the beam waist by translation

of the lenses and almost as easy to simply switch out a lens to change the accessible

range of beam waists. The above lenses allow tuning of w0 between ∼ 120 and 150µm.

The focal beam waist was verified by diverting the beam directly into a charge-coupled

device (CCD) camera and extracting the waist at several points along the optical axis.

2.8.3 Trap potential

The Rayleigh range given by (2.37) for the above trap parameters is ∼ 6 cm and gives

a beam waist at the science cell walls of only ∼ 1.03w0 . A close approximation to the

true trapping potential near the focal point is that given by collimated gaussian beams

of waist w0 . With x and y the beam axes and z the vertical axis the total potential
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may be written as

U(x, y, z) = mgz − A

2
e−2(x2+z2)/w2

0 − A

2
e−2(y2+z2)/w2

0 , (2.44)

where the gravitational potential is included. Here g is the acceleration due to gravity,

m is the atomic mass of a trapped atom and −A is the peak optical potential shift at

the centre of the two overlapped beams. The value of the latter may be found from

(1.69);

A = −Udip(r = 0) =
3πc2

2ω3
0

(
Γ

ω0 − ω
+

Γ

ω0 + ω

)
2P

πw2
0

, (2.45)

where P is the total power of the trapping beams.

A trap minimum is created at x = y = 0 , z = z0 , where gravity displaces the

minimum vertically with respect to the centre of the dipole trap beams. The trapping

frequencies can be calculated from (2.44) and are given by

ω2
x = ω2

y =
2A

mw2
0

e−2z2
0/w

2
0 (2.46)

ω2
z = 2

(
1− 4

z2
0

w2
0

)
ω2
x , (2.47)

giving a cylindrically symmetric trap around z . In the high-optical-power limit where

A� mgw0 , the quantity z0/w0 → 0 such that ωx tends to
√

2A/mw2
0 and ωz tends to

√
2ωx . From (2.47) it is clear that in the low-optical-power limit the trap is destroyed

if the trap minimum displacement reaches half a beam waist. The ratio between the

vertical and horizontal trapping frequencies is shown for the possible values of z0 in

Fig. 2.33. When z0 = −w0/2
√

2 the trap is spherically symmetric.
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Figure 2.33: Dependence of the ratio of the vertical to horizontal trapping frequencies of the
CDT on the sag z0 of the trap minimum with respect to the beam waist w0. Displacement z0

is always negative using the convention that gravitational potential increases in the positive z
direction.
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2.9 State transfer

To be able to work with the broad Feshbach resonance in the 39K |F,mF 〉 = |1, 1〉 state

we need to transfer the atoms from the |2, 2〉 state. This is possible to achieve directly

via a magnetic dipole transition, using radio frequency (RF) radiation of frequency ω

in a uniform magnetic field B. The frequency splitting of the |1, 1〉 and |2, 2〉 states at

low magnetic fields is given by ωres ≈ ωhf + 3µBB/2~, where ωhf = 2π × 461.7 MHz is

the zero-field lower-state hyperfine splitting in 39K and we have taken gF ≈ ±1/2 for

the two hyperfine states. In what is known as the dressed-atom picture we view the

lower state as being shifted up by an energy ~ω. However, coupling ~Ω0/2 (where Ω0

is the resonant Rabi frequency) between the two states means that as ω or B is tuned

they undergo an avoided crossing, and the eigenstates of the system are split by an

energy ~Ω0 where they would otherwise cross (as shown in Fig. 2.34). If the magnetic

field is increased adiabatically then all of the atoms initially in the |2, 2〉 state remain

in the adiabatic lower energy state |φl〉. Removing the RF field once past the crossing

point leaves the atoms in the |1, 1〉 state and state transfer has been successful.

For a finite rate of magnetic field change there is a chance that atoms will undergo

Landau-Zener transitions, ending up in the diabatic |2, 2〉 state. The probability of this

occurring is given by the Landau-Zener equation

P = e−2πΛ (2.48)

W0

È1,1\

È1,1\

È2,2\

È2,2\

ÈΦu\

ÈΦl\

2 Ñ HΩ-ΩhfL

3 ΜB

B

E
�Ñ

Figure 2.34: The avoided crossing scheme of the |2, 2〉 and |1, 1〉 Zeeman levels in the dressed-
atom picture in the presence of an RF field. Where the diabatic energy levels (black) cross, the
adiabatic energy levels |φu〉 and |φl〉 (coloured) are split by Ω0~. Sweeping the magnetic field
strength adiabatically from low to high transfers atoms from one state to the other. The atoms
remain in this state once the RF field is removed.

79
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where

Λ =
(Ω0/2)2

d
dt(ω − ωres)

. (2.49)

In our experiment we chose to perform the state transfer by sweeping the magnetic

field in the presence of a steady RF frequency of 469.3 MHz. We sweep the field at a rate

of 15.4 G s−1 about the 3.6 G resonance position, equivalent to sweeping the detuning

ω − ωres at a rate of 2π × 32 MHz s−1. In the Landau-Zener model a transfer efficiency

above 99% is achieved for a Rabi frequency Ω0 & 2π × 2 kHz.

2.9.1 RF antenna

The antenna used to provide the RF is a single 18 mm radius loop of 1 mm diameter

copper wire, situated a few centimetres from the atoms. A single loop was chosen to

minimise the inductance of the loop which is the main contributor to the impedance

of the antenna. In order to maximise transfer efficiency, Ω0 must be maximised which

is proportional to the amplitude of the RF field. This in turn depends on the power

output from the antenna. To maximise this a tuneable capacitor is used to impedance

match the imaginary part of the impedance of the antenna due to its inductance. The

tuning of the capacitor was achieved by maximising transfer efficiency at low power.

Once the full available power is applied we do not observe any atoms left in the |2, 2〉
state.

2.10 Absorption Imaging

Absorption imaging is the standard method of recording the atomic distribution after

some time-of-flight in cold atoms experiments. The atoms are released from the trap-

ping potential and allowed to freely expand until a resonant or near-resonant pulse of

light is applied. The transmission along the direction of propagation of the light pulse

depends on the number of atoms along the path. The shadow produced is then im-

aged onto a camera for processing as discussed below. Analysis of the resultant images

provides us with details of the imaged cloud such as temperature and atom number as

discussed in §2.11. The process is unfortunately destructive, so the full experimental

sequence must be run through each time a new image is produced.

2.10.1 Optical density

As a beam of light travels through a cloud of atoms, a fraction of the photons are

absorbed dependent on the total atom number per unit area integrated along the beam

path (referred to as the column density, n2D) and the atomic absorption cross-section

σ . It is simple to show that the intensity is attenuated according to Beer’s law,

I = I0e
−σn2D , (2.50)
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where I0 and I are the respective incident and emergent intensities of the imaging beam.

The quantity OD = σn2D is known as the optical density. The standard method of

determining OD requires a set of three images: one where the atoms were present,

Iatoms , one with the unattenuated imaging light (where no atoms were present), Ilight ,

and one with no imaging light for normalisation purposes, Idark . The images here are

rectangular arrays of electron counts at each pixel of the imaging camera’s CCD. The

counts of Idark are produced by any stray non-imaging light that makes its way to the

camera, so ideally the optical density is given by

OD = − ln

(
Iatoms − Idark

Ilight − Idark

)
. (2.51)

2.10.2 Camera

For cold atom experiments the choice of CCD camera often hinges on a trade-off be-

tween price and quantum efficiency (QE), which is the conversion factor of incident

photons to stored electrons. High quantum efficiency cameras have several advan-

tages, e.g. allowing shorter/lower-intensity imaging pulses and offering a better overall

signal-to-noise ratio (SNR). This is most important in studies of such areas as density

fluctuations in ultracold gases [71, 72] where real fluctuations in atom number must be

deduced by removing systematic noise in the image. A high QE is always advantageous,

but there are other features in cheaper cameras with relatively low QE which can make

them more desirable when QE is not critical.

One such feature is the ‘double-shutter’ mode available in some interlining CCD

cameras. In these cameras the CCD is subdivided into alternating columns of sensor

and storage wells. The storage region is masked, so at the end of the exposure the

electrons that have accumulated in the sensor wells are transferred to the storage wells

in a matter of microseconds. The main advantage for our imaging is that a second image

can be taken almost immediately after the first. A common problem in absorption

imaging is that there are fringes in the light intensity (due to the coherence of the

laser) which shift in time due to mechanical vibrations in the system. If the time

between the two illuminated images is small compared to the period of the vibrations

the fringes will overlap and a clear fringeless optical density picture is acquired when

dividing one by the other. If, however, the fringes shift between pictures they will

also appear in the final optical-density image. This is problematic for image analysis,

especially when trying to detect small condensates. It is possible to remove fringes in

post-processing by Fourier filtering methods [73] or by matching the Iatoms image with

a linear superposition of real Ilight images [74], but it is simplest to avoid the issue in

the first place.

Our chosen camera, the PCO Pixelfly QE Double Shutter camera, can take two

images less than 10µs apart, far shorter than standard full-frame CCD cameras (where

the inter-frame time is roughly equal to the digital read-out time, 88 ms for our camera).
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This is because the second image can be taken as soon as the first has been shifted

to the masked region of the interline CCD. The second exposure must, however, be

at least as long as the read-out time because the first image must be registered before

the second can be shifted to the masked region. This leaves additional time after the

imaging light pulse for stray light to be acquired in the image. This means that in our

case two dark images must be taken for normalisation, one short to match Iatoms, one

long to match Ilight , such that optical density is given by

OD = − ln

(
Is

atoms − Is
dark

I l
light − I l

dark

)
. (2.52)

Occasionally images do nonetheless exhibit fringes. Just as with normal shuttering

where it is possible to have a smooth image, there are times when the oscillations

in the system are unfortunately caught at peak velocity and even double-shuttering

produces a fringed image. The extent and regularity of the problem are, however,

much reduced, making it a worthwhile technique.

Despite the relatively low quantum efficiency of the camera of ∼ 28 % for λ =

767 nm , this is higher than the QE of standard interline cameras as the CCD is over-

layed with an array of microlenses. These act to direct the light towards the sensor

regions so that the light that would otherwise strike the masked storage regions doesn’t

go to waste, hence the ‘QE’ in the camera name.

Another neat trick when double-shuttering is available is the ability to image two

species near-simultaneously during time-of-flight. This is done by imaging one set

of atoms with the first double-shutter exposure and the other set of atoms with the

second. The images with no atoms are taken after a pause during read-out of the initial

exposures, and finally the background images. This brings back the issue of fringes in

the optical density images, but the technique was very useful for trouble-shooting.

For example, observing whether there was a correlation between anomalously hot 39K

clouds and low 87Rb atom numbers during sympathetic cooling.

2.10.3 Imaging light

All of our samples are imaged with a beam of σ+ polarised light that is resonant with

the |2, 2〉 → |3, 3〉 cycling transition. A quantisation axis is provided by a weak (few

gauss) guide field provided by the transverse bias coils around the science cell. It is

important for the imaging beam to be near-uniform as the absorption cross-section

varies with intensity, being given by

σ = σ0

(
1

1 + (2δ/Γ)2 + I/Isat

)
, (2.53)
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as may be deduced from (1.67). The resonant cross-section σ0 for σ+ polarised light

on the |2, 2〉 → |3, 3〉 transition is [23]

σ0 =
3λ2

2π
. (2.54)

Some intensity variation across the beam is inevitable, so it is best to use low intensities

(I � Isat) when possible1. It is also sometimes useful (for dense clouds) to detune the

beam to deliberately reduce σ by a determined amount. However, for our critical mea-

surements we tune the imaging beam to resonance as small variations in the detuning

here have little effect on σ, while its dependence on δ is stronger on the sloped sides of

the Lorentzian lineshape.

The light pulse we use for imaging has a relatively high intensity of around Isat/3

and lasts for 80µs. This evolved due to the balancing of several factors. The effective

pixel size (discussed below) of our CCD, the quantum efficiency, the conversion factor

of electrons to counts and the level of read-out noise from the camera require this much

light so that the accessible range of OD is not too severely truncated. The optical

density can also be limited by any off-resonant light in the imaging beam, causing

saturation at a relatively low value. From observations of OD saturation in our images

we choose to trust only optical densities below 3.

2.10.4 Objective

To resolve features on the small length-scales of the atomic cloud an objective was

designed in our group by Alexandre Dareau. The aim was to create an objective out

of cheap standard optical elements, but designed specifically to take into account the

spherical aberrations introduced by the wall of our science cell. The natural aberrations

of the optical elements are calculated to balance one another (and those of the science

cell wall). The design used for horizontal imaging (from which the vast majority of

the data in this thesis is taken) was based on one by Wolfgang Alt [75], designed for

similar purposes. A full description of the finalised objective may be found in [76], a

representation of which is shown (not to scale) in Fig. 2.35. The design has been shown

to have a resolution better than 2µm. The full set of lenses provides a magnification

factor of 2.78, determined by observing the acceleration of the atoms due to gravity

in a sequence of absorption images. This magnification factor gives an effective pixel

size for our camera of 2.32× 2.32µm2, close to the fundamental resolution limit of the

objective.

1When imaging on resonance (δ = 0), a 20 % change in I alters σ by ∼ 10 % around I = Isat, but
only by ∼ 2 % around I = Isat/10 .
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Figure 2.35: Structure of the objective lens system used for absorption imaging. The four
blue optics form the objective which collimates the light from the atoms while compensating
for spherical aberrations introduced at the science cell wall. The red lens is a diffraction limited
achromatic doublet used for focussing the light to form an image at the camera. The 1” optics
are held in a lens tube with fixed spacers to accurately set the required inter-lens separations.
The lenses used to acquire the data in this thesis resulted in a magnification factor of 2.78 .

2.10.5 Imaging sequence

Usually the atoms leave the trap in the |1, 1〉 state, so just before imaging a 100µs pulse

of repumping light transfers the atoms to the |2, 2〉 state with near-perfect efficiency.

The atoms are then imaged (in the presence of a guide field of a few gauss) with an

80µs pulse of light to produce Iatoms. With the double shutter technique the next

exposure starts only 10µs later. However, in this short time the atoms are still in the

path of the image beam. To get around this issue a strong magnetic field is ramped up

to take the atoms far off resonance with the imaging light. This is done rather than

changing the frequency of the light with an AOM to avoid possible changes in the light

intensity. The field-ramping time means we must leave a 60µs gap before taking Ilight

with a second 80µs imaging pulse. The two Idark images are taken over a second later

during which the sequence of events just before the first set of images is mimicked to

make sure the same amount of stray light appears in these images as in the first pair.

The acquired images are then immediately processed into a single OD image by our

MATLAB ‘Pixel Machine’ software (designed by Naaman Tammuz).

2.10.6 ‘Fudge-factor’

Assuming a perfect absorption cross-section σ0 typically causes underestimation of the

atom number [72, 77]. The multiplication factor used to compensate for the difference

between the atom number as calculated using σ0 and the true atom number has col-

loquially become known as the ‘fudge-factor’, roughly equivalent to σ0/σ. This factor

for references [77] and [72] is 4.0 and 1.4 respectively. The reduction in cross-section is

usually mainly attributed to imperfect polarisation of the imaging light. However, in

our case a significant shift is produced by using a relatively high intensity beam and a

long imaging pulse. This results in the cross-section dropping due to both saturation

of the cycling transition and the Doppler shifting of the atoms off resonance due to the

acceleration of the atoms by photon recoil.

The combined effect can be estimated from the scattering force (1.67) and the

dependence of the cross-section on intensity and detuning given in (2.53). Assuming

84



2.10 Absorption Imaging

Figure 2.36: Time-averaged 39K absorption cross-section 〈σ〉t for imaging light that is resonant
for a stationary atom. The variation is shown with light intensity I and imaging pulse duration
τ . The limit τ → 0 shows the standard dependence on intensity, while for I → 0 the ideal cross-
section is recovered for all τ . Imaging with this frequency with our I and τ gives 〈σ〉t ≈ 0.5 ,
but this frequency does not give the maximum value of 〈σ〉t , as discussed in the text.

that initially the cloud of atoms is at rest and the imaging light is resonant leads to

the dependence on intensity and imaging pulse duration τ shown in Fig. 2.36 for 39K

atoms. This takes into account the change in cross-section and scattering force over

time, resulting in a time-averaged cross-section 〈σ〉t. In this simplified model the atoms

are assumed not to drop out of the cycling transition. In this picture the reduction in

effective cross-section for long imaging pulses is significant; for our imaging parameters

〈σ〉t/σ0 is predicted to be about 0.5 .

The effect is exaggerated compared to what is seen experimentally as we tune the

imaging frequency to give the largest OD. This results in the imaging frequency being

tuned slightly above resonance (for stationary atoms) such that as the atoms are ac-

celerated during the imaging pulse they are first Doppler shifted onto resonance before

being shifted away again. This is illustrated in Fig. 2.37 where the dependence of σ

with time is shown for a beam that starts on resonance and for a beam that is ini-

tially tuned above resonance, becoming resonant half-way through the imaging pulse.

The latter case produces the optimal effective absorption cross-section. The resultant

effective line-shape for this ideal model is shown in Fig. 2.38 for a range of imaging

parameters. This illustrates the fact that not only does the effective cross-section de-

crease for a finite pulse duration and intensity, but the peak frequency of the profile is

shifted, the shape is significantly skewed and the line-width increased.

It is not possible of course to directly compare the line-shape of our chosen setup
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Figure 2.37: Variation of 39K absorption cross-section with time when the imaging light is
initially resonant (black line) and when it becomes resonant half-way through the pulse duration
(red-line). The total pulse duration is 80µs and the light intensity is Isat/3 . The time-averaged
value gives the effective cross-section in the OD → 0 limit.
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Figure 2.38: Imaging beam frequency resonances for 39K with σ+ polarisation on the cycling
transition for the Doppler model discussed in the main text. The grey dashed line shows the
ideal lineshape. The black, blue and red lines show the lineshapes where imaging period τ → 0,
40 and 80µs respectively for I/Isat = 0.1 → 0.505 in steps of 0.015. For τ → 0 only the
saturation of the transition affects the cross-section. The blue and red series of lines show how
increasing imaging pulse duration and intensity distorts the perfect Lorentzian lineshape and
reduces the effective cross-section.
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with the ideal form, but we can observe the difference between profiles taken with

different sets of parameters. To confirm that the above effects manifest themselves in

a real system, two series of images were taken of atom clouds created with identical

experimental sequences. Within each series the imaging frequency was varied over a

range of 8 MHz in 0.5 MHz steps, one set being taken with 40µs imaging pulses, the

other with 80µs pulses. The series were interleaved during the experiment and the

whole process repeated for a total of six sets to reduce possible errors.

The data, shown in Fig. 2.39, confirms the qualitative trend expected for an increase

in imaging-pulse duration, and we can fit the data using a model that assumes this

Doppler-based effect is the only one affecting the cross-section. The frequency spacing

between datapoints was controlled in the experiment (and the pulse duration set). This

left I/Isat, absolute frequency and an absolute cross-section scaling factor as free fitting

parameters. The two datasets were fitted simultaneously (producing a single value for

each of the stated fitting parameters), keeping relative frequency and effective cross-

section fixed. The fitted resonance curves are shown as blue and red solid lines in Fig.

2.39, while the predicted resonance curve for a stationary atom (where only the finite

I/Isat affects the ideal lineshape) is given by the black solid line. The ideal Lorentzian

case is shown as a grey dashed line.

The value I/Isat ≈ 0.23 extracted from the fit is inconsistent with the recorded

value I/Isat ≈ 1/3 (determined by pixel counts on the imaging camera’s CCD). The

fudge-factor predicted from the fit of ∼ 1.4 is also inconsistent with the value 1.6

calculated by observing the critical point of an atomic cloud with minimal interactions.

This is not surprising, as imperfect imaging beam polarisation must also be taken into

account. This causes the line-shape to be less skewed than for perfect polarisation

for a fixed intensity or effective cross-section. A model that includes this effect is

unlikely to produce a more meaningful fit to the data due to the over-abundance of

free parameters. However, it does conveniently explain the underestimated I/Isat and

fudge-factor values.

A time-varying σ actually leads to non-linearities in the conversion of OD to n2D,

as what we directly measure in the image is actually the transmission, proportional to

〈e−n2Dσ〉t , rather than the mean optical density, proportional to 〈σ〉t . The effect is

generally small though, with variations of < 1 % for OD < 1 in our scenario. However,

it is important when measuring number fluctuations as mentioned in [72], which is why

they avoid the problem by using a high QE camera. This allows a short low-intensity

light pulse during which the atoms on average absorb only 6 photons as opposed to

∼ 300 in our procedure. Future experiments in the group may require a high QE

camera, but for the experiments covered in this thesis the smooth imaging produced

by double-shuttering with suitable cross-section calibration is more than adequate. It

is well to be aware, though, of the warping of the line-shape and shift in resonance

produced when altering imaging timings and intensities.
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Figure 2.39: Imaging beam frequency resonance data for 39K. The grey dashed line again
shows the ideal Lorentzian lineshape. The blue and red points are experimental data series
taken with 40µs and 80µs exposures respectively, with statistical error bars shown based on
six readings per point. The solid lines show fits using the model discussed in the text, with the
black line representing the 0µs exposure lineshape based on the fitted value for I/Isat ≈ 0.23 .
The data clearly shows the expected skewing of the lineshape to higher frequencies and reduction
in effective cross-section.

2.11 Image Fitting

All of our experimental information is garnered from the images produced by absorption

imaging after time-of-flight. Most of the time this means extracting the atom number

(both condensed and thermal parts) and the temperature. With an appropriate func-

tion the number can be calculated from the integral under the fitted distribution, while

the temperature can be found from the widths of the distribution.

2.11.1 Thermal distribution

We have already found the in-trap distribution of an ideal Bose gas, and the expanded

distribution can be found in a similar way, as described in [78]. Assuming free expan-

sion, a particle can only end up at final position r if it has momentum p = m(r−r0)/t,

where its initial position was r0 . The expanded distribution can therefore be found

by multiplying the integrand on the right-hand side of (1.6) by δ(r − r0 − pt/m) and

integrating over both p and r0 (rather than r). Doing this for a harmonically trapped

gas gives

nT(r, t) =

1

λ3
T

3∏
k=1

(
1

1 + ω2
kt

2

)
g3/2

{
exp

[
µ

kBT
− m

2kBT

3∑
k=1

x2
k

(
ω2
k

1 + ω2
kt

2

)]}
.

(2.55)
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For the critical density distribution (µ→ 0) this can be rewritten as

nc(r, t) =
nc(0, t)

ζ(3/2)
g3/2

{
exp

[
−1

2

(
x2

R2
T x(t)

+
y2

R2
T y(t)

+
z2

R2
T z(t)

)]}
, (2.56)

where the thermal radii RT k(t) have been redefined as

RT k(t) =

(
1 + ω2

kt
2

mω2
k

kBT

)1/2

, (2.57)

such that they now also apply during time-of-flight. For t → 0 the in-trap critical

density distribution (1.16) is recovered. Imaging the atoms gives us a two-dimensional

optical density map, equivalent to integration of the three-dimensional distribution

along y:

nc 2D(rxz, t) =

∫ ∞
−∞

nc(r, t) dy . (2.58)

Here rxz is the radial vector in circular polar coordinates in the x-z plane. By using

the sum representation of gs(z) given in (1.9) it is straightforward to show that

nc 2D(rxz, t) =
nc 2D(0, t)

ζ(2)
g2

{
exp

[
−1

2

(
x2

R2
T x(t)

+
z2

R2
T z(t)

)]}
(2.59)

where

nc 2D(0, t) =
√

2πRT y(t)
ζ(2)

ζ(3/2)
nc(0, t) . (2.60)

By fitting an image with this g2 function we can obtain RT x(tTOF) and RT z(tTOF)

which, along with our trapping frequencies, allow us to calculate the temperature of

the cloud using (2.57). It is worth noting that fitting full thermal distributions of

atoms near the critical point with a gaussian function produces significant errors in

temperature measurement as mentioned in [41]. As long as we know the conversion of

optical density to number density the integral under the fitted g2 function also gives

the total thermal atom number as

NT =
ζ(3)

ζ(2)
2πRT x(t)RT z(t)nc 2D(0, t) . (2.61)

2.11.2 Thomas-Fermi distribution

We have seen that, even for very weak interactions, if the number of condensed atoms

N0 is large that the ideal gaussian distribution for the condensate is warped into a

parabolic shape. If we are in this Thomas-Fermi regime it can be shown (as discussed

in e.g. [19]) that this form also holds during time-of-flight, such that the distribution

is given by

n0(r, t) = n0(0, t)

(
1− x2

R2
x(t)
− y2

R2
y(t)
− z2

R2
z(t)

)
(2.62)
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inside the ellipsoid with semi-axes Rk(t), and it is 0 outside this region. Now the

Thomas-Fermi radii Rk(t) are time dependent, where at t = 0 they take the in-trap

values

Rk(0) =

√
2µ

mω2
k

. (2.63)

Here µ is the Thomas-Fermi chemical potential given by (1.29). In our experiments

the time dependence of these radii is not important as we are only trying to extract

the atom number from the fits to the condensate. Of general interest though is the

aspect ratio in time-of-flight. Considering for simplicity an axially symmetric trap

ωx = ωy = ω⊥ , we can denote the in-trap aspect ratio of the condensate λ = R⊥/Rz .

It can be shown analytically [79] that for λ � 1 (i.e. a ‘cigar-shaped’ trap symmetric

around z) the aspect ratio for long time-of-flight goes to 2/πλ � 1, so there is an

inversion of aspect ratio during time-of-flight. In general an aspect ratio inversion will

be observed for any asymmetric trap. This of course differs from a thermal cloud where

the distribution tends towards spherical symmetry with increasing time, and is another

signature of Bose-Einstein condensation.

We must integrate (2.62) over y to yield the two-dimensional distribution

n0 2D(rxz, t) = n0 2D(0, t)

(
1− x2

R2
x(t)
− z2

R2
z(t)

)3/2

, (2.64)

where

n0 2D(0, t) =
4

3
Ry(t)n0(0, t) . (2.65)

Integrating over the remaining dimensions yields the total atom number

N0 =
1

5
2πRx(t)Rz(t)n0 2D(0, t) . (2.66)

2.11.3 Fitting routines

The image fitting is carried out by our ‘Analysis GUI’ program, created in MATLAB

by Naaman Tammuz. Essentially, it applies a set of non-linear least squares fitting

routines to the data, with the specifics of each iteration dependent on the parameter we

are trying to extract from the image. These are discussed in more detail in the relevant

experimental sections. The essential parameters for processing the images (such as the

trapping frequencies, apparent pixel size, effective imaging cross-section etc.) are set

by the user. The program returns a database of the fit results and calculated quantities

for all the images that were selected for processing.

2.12 Computer control

Typically our experimental sequences last around a hundred seconds, while some steps

in the sequence need to be timed with microsecond precision. A computer system must
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be used to deterministically trigger and control our experimental equipment, with a

suitable user interface for simple construction of complex sequences. With the large

number of experimental components to control during each run this is a somewhat

daunting task. The implementation of such a system in our lab was made much more

straightforward thanks to a set of applications created and maintained by Aviv Keshet

in Wolfgang Ketterle’s group at MIT, which he has made freely available to the scientific

community. This software is designed to be compatible with National Instruments

analogue and digital output hardware, and allows communication to devices via RS-

232 and GPIB protocols.

The system allows digital TTL voltage signals to be sent to components such as

mechanical shutters which just require an on/off signal, while analogue voltage signals

are used to set power-supply outputs, AOM amplitudes and so forth. Items such as the

translation stage and RF generators are controlled via RS-232, while the microwave

generator uses the GPIB protocol for communication.

2.12.1 Software

The control software is comprised of Cicero, the client user interface, and Atticus, the

server. Sequences are constructed in the intuitive Cicero interface, which are then

compiled by Atticus into a command sequence that can be passed on to the output

hardware. Cicero allows batches of sequences to be run where parameter values are

cycled according to user-defined lists, simplifying the acquisition of experimental data

sets. The software is naturally attuned to the operation of cold atoms experiments,

with nearly all of the functionality we desire being available. The only major feature

missing is the ability to allow feedback from system inputs, which would require major

alterations and additions to the software and is generally unnecessary.

A significant feature added by Aviv while we were setting up our experiments was

the ability to use a variable time-base. Normally a sequence allowing for microsecond

resolution with a hundred output channels would essentially require a set of a hundred

million commands to be sent for every second of the duration of the experimental

sequence. The amount of data that can be stored in the output buffer generated

by Atticus limits the duration of a sequence created in this way to a rather modest

length, and the large amount of data to be compiled creates substantial delays between

sequences. However, the variable time-base feature vastly reduces the buffer size by

updating outputs only when something is changing. Trigger signals to change state

are generated separately, so when all outputs are constant in the system instead of

sending the same set of commands every microsecond, just one command is sent for

the entire period. This allows us to keep the microsecond resolution where needed while

permitting the sequence length required for our experiments.

As we have made no modifications ourselves to the software there is no need to

discuss its use and structure here. The full functionality is covered in the user manuals
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2.13 Field and resonance calibration

Part description Company Part number Quantity

Chassis National Instruments NI PXIe-1062Q 1

Digital card National Instruments NI PXI-6533 1

Digital card National Instruments NI PXI-6534 1

Analogue card National Instruments NI PXI-6713 2

RS-232 card IntaShield IS-400 1

GPIB card National Instruments NI GPIB-USB-HS 1

Analogue connector block National Instruments NI BNC-2110 2

Table 2.7: Summary of the hardware used for computer control. All items were chosen to be
compatible with the Cicero sequence generator software.

provided by Aviv Keshet [80].

2.12.2 Hardware

Having opted to use the Cicero software the choice of hardware was greatly simplified.

A desktop computer was chosen to run the software with 4 GB of RAM to cope with the

large output buffers. Most of the rest of the hardware is made by National Instruments

to be compatible with the software. The parts used in our system are listed in Table

2.7.

The basic hardware setup is shown in Fig. 2.40. The software is run on a desktop

PC, with the GPIB card and the 4-port RS-232 card directly connected. The analogue

and digital cards are connected to the National Instruments chassis. When a sequence

has been compiled by the Atticus software the sequence data is sent to the chassis

while timing data is sent to a separate FPGA board. The FPGA board synthesises a

variable frequency clock to produce the timing triggers which are sent directly to one

of the analogue cards and shared between the analogue and digital cards. During a run

successive groups of signals are sent from the output cards on receiving each timing

signal. Break-out boxes to connect the 32 digital channels of each digital card to BNC

connectors were made, with opto-couplers installed for isolation purposes. Commercial

connector boxes were used for the analogue channels. The output signals are sent on

from here to the experiment. As the RS-232 and GPIB cards do not share the timing

signal of the digital and analogue cards, there is a lack of complete synchronisation,

but precise timing of the RS-232 and GPIB commands are not critical in our setup.

2.13 Field and resonance calibration

The purpose of our experiments is not to investigate the Feshbach resonance itself,

rather simply to use it for tuning interactions. However, it was still necessary to
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Figure 2.40: Simple schematic of the hardware setup for computer control. In our system
there are two analogue and two digital cards connected to the chassis. The analogue cards have
eight channels each while the digital cards have thirty-two.

calibrate the field produced by the Feshbach coils for a given electric current, and to

check that our own resonance position and width calibrations agreed within errors with

the values found during the more stringent calibrations carried out at LENS [6, 12, 81].

2.13.1 Field calibration

In order to calibrate the field produced by our Feshbach coils we looked at state transfer

of rubidium in the presence of an RF field. The most precise determination of the
39K |1, 1〉 resonance position B∞ to date was carried out in [12], giving a value of

402.50(3) G. We chose this as a natural point to calibrate our current-to-field conversion.

Returning to the Breit-Rabi equation (1.33), the splitting between the |2, 2〉 and |2, 1〉
states in 87Rb at this field value is 249.444 MHz. An RF field at this frequency was

applied to a thermal cloud of rubidium held in the optical trap while the current in

the Feshbach coils was swept over a 160 mA range in 200 ms. This was repeated while

incrementing the central current in steps of 80 mA . The expectation is that atoms

are transferred to the |2, 1〉 state if 402.50 G lies within the range of the magnetic field

sweep. To distinguish between atoms in the |2, 2〉 and |2, 1〉 states we spatially separated

them by appling a Stern-Gerlach field gradient during time-of-flight. This produced a

clear signal, allowing us to determine the current to produce a field of 402.50 G at the

atoms to be 152.46(8) A . This gives the conversion factor given in Table 2.3.

2.13.2 Resonance measurement

Our initial calibration of the resonance position relied on the enhancement of three-body

losses in the vicinity of a Feshbach resonance. 39K atoms were prepared in the optical

trap using a standard sequence to provide a fixed starting number and temperature.
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For the data-set shown in Fig. 2.41 a the field was first swept to 403.4 G (near to the

resonance), before sweeping from there to the final value in 20 ms and holding at this

field for 100 ms1.

As expected, there is a dip in final atom number near the expected resonance

position, but it is asymmetric and looks to be centred to the attractive side of the

resonance position. This was also found in similar experiments carried out by Massimo

Inguscio’s group at LENS when the first studies of the resonance were made [81]. In

their case, fitting a single gaussian profile to the data gave a resonance position of

403.4(7) G, similar to the apparent shift in our data. The asymmetry in the profile

can be attributed to the enhancement of three-body losses on the attractive side of the

resonance, due to the mechanism described in [82]. The losses are greatest on resonance

but decrease more sharply on the repulsive side of the resonance, as can readily be seen

in Fig. 1 of [12]. This is compounded by the increase in average density for a cloud with

attractive interactions which also enhances three-body recombination. The minimum

remaining atom number actually closely coincides with the accepted resonance position,

marked in Fig. 2.41 by the dashed line.

We decided to attempt a more accurate determination of the resonance position

following a similar method to that found in [12]. The idea is to prepare identical

thermal 39K clouds with the field at a fixed initial value. At some point during time-

of-flight the field should be switched to its measurement value. If the scattering length

is tuned to a large positive value the increase in interaction energy causes a more rapid

expansion of the cloud, while if it is tuned to large negative values three-body processes

heat the cloud. Both of these processes produce an enhancement of the cloud size after

further time-of-flight2. This produces a sharper feature than our initial calibration as

the density of the cloud after some TOF is greatly reduced, so an effect is only seen for

very strong interactions.

Our first attempts at calibration in this manner failed due to the inability to ramp

the Feshbach coils quickly and precisely, probably due to the large self-inductance of the

coils. We therefore decided to use the vertical bias coils around the science cell to pro-

duce a small field offset which could be quickly switched off. A small current producing

a field of about 3.5 G was turned on once a cold thermal gas had been produced in the

CDT. The current in the Feshbach coils was then ramped to its measurement value,

with the opposing bias field keeping the atoms away from resonance. After 4 ms TOF

the bias field was switched off quickly, while the current in the Feshbach coils remained

constant until being turned off just before imaging. Fig. 2.41 b shows the cloud-width

measured with varying final field value. The sharp peak is close to the expected value.

This measurement gives a resonance position of 402.3(3), in agreement with the pre-

1We carried out several different calibrations with different initial fields and final hold times, and
all produced similarly-shaped loss profiles.

2This effect is useful for calibrating the resonance position, but is detrimental when attempting to
accurately determine temperature after TOF expansion, as discussed in §5.5.2.
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Figure 2.41: Feshbach resonance calibration. a Surviving atom number after 100 ms hold
time at the final in-trap field value. The centre of the broad asymmetric resonance feature is
shifted to the attractive side of the expected resonance position of 402.50 G (dashed line) due to
the enhancement of three-body processes at negative scattering lengths. b Cloud width at the
end of 18 ms TOF after the field is switched to its final value 4 ms after release from the optical
trap. This produces a sharp feature near the expected resonance position. The background rise
in width with increasing field is due to the pre-TOF field increasing, being offset by 3.5 G from
the measurement value, causing heating before release from the trap. Error bars are statistical.

cisely determined value of 402.50(3). Having satisfactorily reassured ourselves in this

manner we chose to use the latter for calibration of the scattering length.

2.13.3 Zero crossing measurement

To independently calibrate for the width of the resonance we looked for the zero crossing

position. For attractive interactions the mean-field interaction energy decreases with

increasing density, so BECs are unstable against collapse [83, 84]. We therefore created

cold atomic clouds of 39K with a small condensed fraction at our standard evaporation

scattering length of 135 a0, before tuning the field close to the zero-crossing position.

Fig. 2.42 shows a typical series of five images where the final field strength is decre-

mented through the crossing from 351.0 down to 349.3 G. The variation in scattering

length across the images is less than a single a0 (see Table 1.1), so the sharp drop in

size observed from image b to image c is attributed to having just passed into the at-

tractive regime. The location of the zero crossing is therefore somewhere in this region,
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Figure 2.42: Sample images of Bose-Einstein condensates after the Feshbach field has been
swept close to the zero-crossing point. Images a and b are representative of all images seen
close to but on the repulsive side of the zero crossing. A sharp drop in size is seen between
images b and c, suggesting the zero crossing lies between the field magnitudes for these two
images. The collapse of the condensate is more obvious in images d and e. The colour bar
shows the conversion between optical density and colour, though in these images the optical
density saturates at the centre of the BEC due to high atomic column densities.

Figure 2.43: The complete setup on the vacuum chamber table used to reach quantum de-
generacy of 39K.

i.e. B0 = 350.4(2) G, consistent with ∆ = −52 G. Images d and e more clearly show

the collapse of the condensate.

The system is shown in its completed state in Fig. 2.43.
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Chapter 3

Experimental sequence

“ You know my methods, Jeeves. Apply them.”

– P. G. Wodehouse (Right Ho, Jeeves)

Having outlined the techniques involved and some of our particular experimental pa-

rameters in the previous chapter, our process for creating Bose-Einstein condensates

and the optimisation of experimental stages are discussed, as summarised in [85]. Much

of the process is similar to that used to produce the first 39K BEC in the Inguscio group

at the University of Florence [7], although our original intention was to carry out sym-

pathetic cooling in a quadrupole trap, as discussed later in the chapter. As the QUIC

trap wasn’t in the original plan it is not perhaps as well integrated as if we had intended

to use this trap from the outset. However, the long trap lifetime it affords leads to very

efficient sympathetic cooling, resulting in large 39K condensates in the crossed dipole

trap. At the end of the chapter a summary of the experimental stages is provided in

the form of Fig. 3.13.

3.1 Laser cooling

The first stage of the experiment is to load both 39K and 87Rb into the MOT from

the background vapour provided by the getters. Often the atom sources are only fired

once or twice a day to keep the pressure at a usable level. When taking data though

we switch to applying a low current 30 s burst during every run to keep experimental

conditions as stable as possible. The current is applied only while the experiment is

being carried out in the science cell so as not to interfere with the loading of the MOT.

3.1.1 Monitoring MOT loading

In order to monitor the loading of the MOT during experimental sequences we use the

standard fluorescence detection method. A lens is positioned close to a spare window of

the MOT chamber to collect fluorescent light and direct it onto a photodiode, producing

a current which is converted to a voltage for display on an oscilloscope. If the MOT
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3.1 Laser cooling

parameters (i.e. magnetic field gradient, light frequency and intensity) remain constant

the number is roughly proportional to the photodiode current. The absolute number

can be gauged from the equation

N =

(
4π

Ω

)(
Ipd/Rpd

Γ̄scatthν

)(
1

T

)
, (3.1)

where Ω is the solid angle subtended by the aperture of the light-collecting lens, Ipd is

the photodiode current, Rpd is the responsivity of the photodiode (i.e. the conversion

factor of incident light power to photodiode current), Γ̄scatthν is the mean fluorescent

power of an atom in the MOT, and T is the transmittance of the optics between the

atomic cloud and the photodiode. This relationship holds well for low atomic densities,

but breaks down when there is a significant amount of photon reabsorption within the

cloud. At this point the fluorescence to number conversion becomes sub-linear. Early

comparisons with absorption imaging in the MOT suggest that the fluorescence acts

well as a rough guide in our system.

The conversion is fairly straightforward for 87Rb as Γ̄scatt is relatively simple to

calculate, but the small level splitting in 39K complicates matters [86]. The number

can be calibrated by absorption imaging, but most of the time relative day-to-day

comparisons are all that we are interested in. It should be noted that at high densities

the linear conversion of fluorescence to number is lost due to photon reabsorption in

the cloud, which also limits MOT densities and temperatures [87]. Additionally a Sony

digital video camera (using ‘nightshot’ mode where the infra-red filter is removed)

is used to provide constant live footage of the MOT on a monitor. This facilitates

observation of the size and position of the trapped cloud for balancing the MOT beams

and optimising the optical molasses cooling stage.

3.1.2 MOT optimisation

Number

The capacity of the MOT is essentially limited by the proportion of particles in the

background vapour that are capturable to those that are not. The number saturates as

the capture and loss rates become equal. Collisions with the background vapour are the

main cause for trap losses at low densities, while light-assisted collisions become more

important at high densities. Re-absorption of spontaneously emitted photons produces

a repulsive force between atoms which limits the cloud density. Full descriptions of

MOT dynamics are fairly complex [88], but generally speaking the capacity can be

maximised by using high intensity cooling beams with large detunings such that the

capture velocity is increased. For bosonic potassium this is slightly complicated by the

small hyperfine splitting, and both laser frequencies (as both contribute to the trapping

force) must be red-detuned from the entire upper-state manifold [13, 54].

To optimise the number we look at the fluorescence detected at the monitoring
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Figure 3.1: Example of 39K MOT number optimisation as discussed in the text, where the
cooling light frequency detuning is being varied. These data were taken with the repumping
light detuned by 31 MHz.

photodiode. Changing MOT parameters generally alters the fluorescence to num-

ber conversion factor, so is not a reliable direct gauge for optimising the number of

trapped atoms. However, if an alteration is made quickly with respect to the MOT

loading time, one may observe whether the MOT fluorescence consequently grows or

shrinks, indicating whether the situation has improved or worsened. This is the stan-

dard method for rough optimisation of beam alignment, field gradient and so on. For

a more precise comparison we optimised the frequency detunings by letting the MOT

saturate for a given frequency detuning before quickly switching to resonance, record-

ing the transient peak fluorescence. An example set of data for a given detuning of

the repumping light is shown in Fig. 3.1. We found detunings of −7.6 and −4.6 Γ

(Γ = ΓK ≈ ΓRb ≈ 2π × 6.0 MHz) for the cooling and repumping light respectively1

and B′ = 4 G cm−1 (the field gradient along the weak axis) maximised the number

of trapped 39K atoms. The total power in the six MOT beams is 310 mW where each

beam has a diameter of around 3 cm, resulting in intensities of several times Isat. When

operated on its own the potassium MOT saturates at around 1× 109 atoms.

Rubidium is more simple to work with having a large splitting between the |F ′ = 2〉
and |F ′ = 3〉 levels. The 87Rb MOT is very robust in terms of number. We use

a detuning of −3.1 Γ for the cooling light, with the weak repumping light close to

resonance. There is a total of 130 mW of cooling light in the cooling beams, and a total

of 10 mW of repumping light. The number of atoms in the single-species rubidium

MOT saturates at around 5× 109.

1Detunings are measured from the specific transition frequency in question, e.g. for repumping light
the |F = 1〉 → |F ′ = 2〉 transition.
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Figure 3.2: Photo of the fluorescence produced by the dual-species MOT. The horizontal
compensation coils can also be seen, wound around the adjacent MOT chamber windows.

Temperature

The large detunings and low field-gradient used to maximise the amount of potassium in

the MOT unfortunately result in high temperatures due to the small damping coefficient

and low densities. This is the opposite of what is desired for evaporative/sympathetic

cooling, so 40 ms from the end of MOT loading B′ is suddenly increased to 6 G cm−1,

while the detunings of the cooling and repumping light are jumped to −1.5 and −4.1 Γ

respectively. The duration of this stage is short enough to avoid any noticeable loss of

atoms while the temperature is greatly reduced [54]. During this stage the intensity of

the repumping light is also reduced slightly. The cooling frequency ends up within the

excited state manifold in a more analogous situation to standard MOT setups. The

effect is to increase the frictional Doppler force on the trapped atoms, cooling them

down.

3.1.3 Dual-species MOT

When both species are simultaneously loaded the peak number of potassium atoms

is reduced by a factor of ∼ 3 by interspecies light-assisted collisions [89], while the

amount of rubidium is only reduced by around 15 %. This is not a great problem as

we desire a large ratio of rubidium to potassium for sympathetic cooling, though it

should be possible to reduce the problem (at the expense of ideal alignment with the

magnetic field) by displacing the two MOTs from one another using a ‘push beam’

[90] if required. In order to control the amount of trapped potassium, we initially load

rubidium on its own for around 15 s before turning on the potassium light for between

0.5 and 3 s. A picture of the loaded MOT is shown in Fig. 3.2.
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3.1.4 Optical molasses

To cool the atoms further before loading the magnetic trap a brief stage of optical

molasses is required. At this point, it is particularly important for the six MOT beams

to be well balanced so that when the magnetic field is turned off (and the atoms are

no longer trapped) the expansion of the cloud is slow and symmetric. The standard

technique of matching the MOT position for strong and weak gradients is used to

achieve this, while a more quantifiable signal is provided by observing the decay of the

fluorescence on the photodiode when suddenly switching off the magnetic field.

During the molasses stage the rubidium cooling light detuning is increased to −4.9 Γ

and is reduced in intensity to allow low temperatures to be reached by sub-doppler

cooling processes. The potassium level-splitting once again complicates matters though.

It seems logical that when the level-splitting, ∆ , between the upper-state cooling level

and its adjacent state is much larger than the natural linewidth Γ that the adjacent

level will not interfere with sub-doppler processes, which is indeed the case. More

surprisingly, it has been shown that when ∆ is smaller than Γ , sub-doppler processes

continue to work well, as demonstrated in [91]. However, when ∆ ∼ Γ, as is the case

for 39K, the proximity of the neighbouring levels can disrupt the sub-doppler processes,

and indeed at the time our work was carried out sub-doppler laser cooling was yet to

be observed for 39K.

We optimised the final temperature of 39K within our cooling scheme by dropping

the relative repumping light intensity to roughly a tenth of the cooling light intensity

for 6 ms of molasses, observing a minimum final temperature in the absence of 87Rb of

∼ 200µK, not far off the Doppler limit TD = 145µK. When rubidium is also present the

temperature is limited to around 600µK, probably due to a higher starting temperature

at the end of the MOT phase. Rubidium is cooled well below the Doppler limit to

∼ 50µK in spite of the presence of potassium.

Recent findings [92, 93] have shown that it is in fact possible to reach the sub-

Doppler region for bosonic potassium isotopes with laser cooling. This is achieved by

controlling the natural pumping of atoms into a dark state, minimising heating due

to the reabsorption of spontaneously emitted photons [94]. Our current method is

not very dissimilar to the successful sub-Doppler schemes, the main development of

[93] being a clever ramping of frequency and intensity to address the majority of the

atoms1. This should be relatively easy to implement, and is a major step on the way

to directly cooling 39K. This progress may induce a boom in 39K experiments due to

its more favourable properties.

1It is possible that sub-Doppler cooling is achieved in our system for some fraction of the atoms,
producing a bimodal velocity distribution like that shown in Fig. 3 (b) of [93]. In this picture, low
velocity atoms are cooled further (‘the rich get richer’) while energetic atoms are unaffected or possibly
even heated.
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3.2 Magnetic trapping and transport

At the end of the optical molasses stage the repumping light stays on for both species

for a millisecond after the cooling light is switched off to ensure all the atoms are in the

|F = 2〉 state. At this point the pumping guide field is switched to a few gauss, before

a 200µs burst of intense pumping light is applied. The circularly polarised pumping

light is resonant with the |F = 2〉 → |F ′ = 2〉 transition for rubidium, while it is tuned

slightly above (∼ 2 Γ) for potassium due to the close proximity of the |F ′ = 1〉 level.

Pumping to the |F,mF 〉 = |2, 2〉 state is about 80 % efficient for rubidium, 65 % for

potassium.

To capture the atoms, the quadrupole field produced by the transport coils is

switched on at B′ = 20 G cm−1 (weak axis) and then ramped linearly in 50 ms to

80 G cm−1 to adiabatically compress the cloud. During this ramp up the track is ener-

gised to prepare for the transport. The coils then travel the 74 cm to the science cell

in under two seconds as described in §2.5.3.

During transport the atomic cloud has to pass through a minimum aperture 10 mm

in diameter. Any atoms that happen to touch the walls as the coils pass along the

system adhere to the vacuum chamber and are lost. As only the most energetic atoms

can reach the walls, the effect is analagous to an inefficient stage of evaporative cooling.

Atoms with an energy greater than ∼ 2.7 mK are lost, so it is mainly potassium that

is affected due to its higher temperature. Around 40 % of the potassium atoms are

removed via this process. Losses due to Majorana spin-flips are minimal during this

stage as the temperature of the atoms is still relatively high.

Once the atoms have reached the science cell there is a one second wait to ensure

the track settles to the correct location within its precision bounds before the track is

de-energised. During this pause one of the microwave generators is turned on ready to

start evaporating rubidium. Due to some thermalisation between the two species (and

the loss of high energy potassium atoms during transport) the rubidium temperature

has increased slightly and the potassium temperature decreased by this time.

3.3 Sympathetic cooling

3.3.1 Choice of trapping potential

Because of our earlier experiences of direct cooling in a quadrupole trap (see Appendix

B) we initially planned to use this potential for sympathetic cooling. The fact that

potassium has to end up in a purely optical potential meant that, instead of using

an optical plug to suppress Majorana spin-flips, we intended to offset the CDT from

the magnetic zero, as done in [55]. In fact this method allowed us to apply a 10 s

evaporation sweep when cooling rubidium alone, before transfer to the CDT for further

forced evaporation, resulting in BECs of 5× 105 atoms.
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Unfortunately, we were unsuccessful in using this method for sympathetic cooling.

This was due in part to the relatively small K-Rb interspecies background scattering

length1, which precludes the use of such short evaporation sweeps. Longer sweeps are

also prohibited by inelastic collisions with 87Rb atoms in the |2, 1〉 state. These are

created by Majorana spin-flips, in spite of the presence of the ODT. If we were able

to use a stronger quadrupole field the evaporation rate could be increased, perhaps

making this method more viable.

While attempting to find the best solution for sympathetic cooling we were also

able to condense 87Rb in an optically-plugged quadrupole trap [4], a time-averaged

orbiting potential trap [59], and directly in the QUIC trap. With our system we found

the QUIC trap to be by far the most effective for sympathetic cooling because of the

elimination of |2, 1〉 87Rb atoms, as discussed below. Before turning on the QUIC

trap a short microwave evaporation sweep is applied in the quadrupole trap to aid the

loading efficiency of both species. We use a two-second linear sweep from 6909.68 to

6879.68 MHz, corresponding to removing rubidium atoms with energies above 2.4 to

1.4 mK.

3.3.2 Transfer to the QUIC trap

Transferring the atoms to the QUIC trap is not quite so simple as just ramping up

the Ioffe and bias coils to their final values. Initially, an increase in just the Ioffe coil

current draws the atoms towards the coil due to the translation of the zero-field point,

which can bring the cloud into contact with the wall of the vacuum chamber. Once the

magnetic zero disappears, any further increase in Ioffe current pushes the atoms back

away from the coil, as the point at which B′ is cancelled by the Ioffe field gradient gets

further from the Ioffe coil. Additionally, it is important to ensure that the trap does

not become too shallow at any stage.

Taking these factors into consideration resulted in the ramping scheme shown in

Fig. 3.3. The bias coils are used to counteract the initial tendency of the trap to move

towards the Ioffe coil (i-iii) before the current in the quadrupole coils is reduced slightly

to increase the height of the trap near the Ioffe coil. Once the magnetic zero is lost

(iv) the coil currents are slowly ramped to their final values (v). The minimum total

trap depth during this process is ' 1 mK, occurring at stage iii. Applying this method

results in 4 × 108 rubidium atoms and up to 4 × 107 potassium atoms in the QUIC

trap.

3.3.3 Cooling in the QUIC trap

With sympathetic cooling there is a natural tradeoff between the size of the sympa-

thetically cooled load and the lowest achievable temperature. Our particular aim is to

1aK-Rb = 36 a0 [65], to be compared with the rubidium intraspecies scattering length aRb = 99 a0

[95].
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a i ii iii iv v

b i ii iii iv v

Figure 3.3: Transfer of atoms from the quadrupole trap to the QUIC trap. a Trapping
potential along the Ioffe coil axis at five stages during transfer. In each plot the solid black
line gives the potential ∝ |B| in terms of thermal energy, while the faint red line illustrates the
variation of the magnetic field B. The dashed lines represent the sides of the science cell. b
The current through the transport (black), Ioffe (blue) and bias (red) coils during transfer to
the QUIC. i Initially current is running through just the transport coils forming a quadrupole
trap. ii The currents in the Ioffe and bias coils are ramped up, reducing the total trap depth.
iii The trap depth reaches its minimum value of ∼ 1 mK. iv The point at which a QUIC trap is
formed. v The currents reach their final values, ready for sympathetic cooling.

cool the largest possible number of 39K atoms to a temperature of about 5µK. This

is mainly motivated by the 73µm difference in gravitational sags (discussed in §2.6)

for the two species in our QUIC trap. This corresponds to the vertical thermal radii

for the two species RRb
T ≈ RK

T at a temperature of about 4µK. Even for very small

potassium loads sympathetic cooling will become inefficient at around this temperature

due to the reduced spatial overlap of the clouds [96]. It is also motivated by the loading

efficiency of the CDT from the QUIC, though this is a slightly cyclic argument as the

CDT parameters themselves were also adjusted for this purpose.

The substantial field offset at the trap minimum of the QUIC trap eliminates the

detrimental spin-flips of the quadrupole trap, but during evaporation a finite |2, 1〉
state population for rubidium is still observed. One possible mechanism that would

cause this is illustrated in Fig. 3.4. Atoms that are successfully transferred to the |1, 1〉
state accelerate away from the trapped atoms, but the evaporating microwave frequency

becomes resonant with the |1, 1〉 → |2, 1〉 transition at a particular field strength. There

is some finite chance that atoms will be transferred to the |2, 1〉 state and once again

become trapped. This mechanism is suggested in [97].

The field offset of the QUIC trap is once again beneficial however, as a second mi-

crowave frequency can be used to transfer any |2, 1〉 atoms to the |1, 0〉 state (illustrated
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|2, 2〉

|2, 1〉

|2, 0〉

|2,−1〉

|2,−2〉

|1,−1〉

|1, 0〉

|1, 1〉

Figure 3.4: Possible mechanism by which rubidium atoms are transferred to the |F,mF 〉 =
|2, 1〉 state, and how they are removed. The variation of the energy levels with distance from
the trap centre (dashed line) is shown (the gap between manifolds is not to scale). Microwave
radiation used for evaporation to the |1, 1〉 state is also resonant with the |1, 1〉 → |2, 1〉 transition
further from the trap centre (black arrows). The finite field offset at the trap centre allows a
second microwave frequency to be applied to permanently remove atoms from the trap (red
arrow).

by the red arrow in Fig. 3.4) which will then leave the trap permanently. We transmit

this second microwave frequency with the same antenna, combining the signals before

amplification. A saw-tooth sweep is used for the clean-up microwave signal, sweeping

between 6838 and 6844 MHz with a 5 s period. This has no effect on the atoms in the

|2, 2〉 state.

3.3.4 Sympathetic cooling results

The results of our sympathetic cooling experiments are summarised in Fig. 3.5. Firstly,

as shown in Fig. 3.5 a, we characterised the rubidium cooling reservoir. Allowing for

the fact that, for the same trap depth, the temperature of rubidium will inevitably be

higher in the presence of potassium, we set the target temperature for rubidium to be

∼ 3µK. At the start of evaporation the remaining rubidium atoms have a temperature

' 100µK while the potassium atoms are at ' 200µK. We therefore use a starting

microwave frequency of 6873.68 MHz, corresponding to a thermal energy of ∼ 900µK,

providing a high starting η. For efficient sympathetic cooling we evaporate the rubidium

with a long exponential sweep lasting 56 s1 with a decay constant of 14 s, to a final

1Shorter sweeps are found to be just as effective for cooling rubidium on its own due to its high
rethermalisation rate, but are not sufficient when potassium is also present.
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a

b

Figure 3.5: Evaporative and sympathetic cooling in the QUIC trap. a Cooling trajectories
in single- (squares) and two-species (circles) experiments. Open and solid markers represent
87Rb and 39K respectively. The two fits show the difference between the steep trajectory for
sympathetic cooling (solid line, γsym = 20) and that for efficient evaporative cooling (dashed
line, γ = 3.6). Vertical error bars lie within the markers. b Final temperature reached by
sympathetic cooling for different sizes of the 39K load. The dashed line shows the temperature
reached by 87Rb for the same evaporative cooling sweep in the absence of 39K.

frequency of 6847.24 MHz. This is followed by a 6 s period of plane evaporation where

the frequency is held at its final value.

Such a long evaporation sweep results in a very high cooling efficiency with γ = 3.6,

where γ was defined in equation (2.33). Also shown in Fig. 3.5 a is the phase-space

density evolution of a typical 39K cloud used in our experiments. The near-vertical

evaporation trajectory is the hallmark of effective sympathetic cooling. In this instance

the cloud reaches a final temperature of about 5µK while the atom number is reduced

by less than a factor of two, from approximately 25 × 106 to 14 × 106. This gives

an effective cooling efficiency γsym ≈ 20. Around a 20 % reduction in NK is expected

over the evaporation period due to the trap lifetime, so the observed atom loss shows

evidence for the presence of other inelastic processes, but the effect is not too large.
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87Rb

39K

0

1

2

3

Figure 3.6: Sympathetic cooling in the QUIC trap. The field of view is 3.2× 2.4 mm , the OD
scale is given on the right. Images of 87Rb (top) and 39K (bottom) are taken at three points
through the sympathetic cooling process after a fixed TOF. The potassium atom number does
not decrease much, but the cloud is clearly cooled. The saturation of OD in the rubidium
images is caused by imaging such large atomic samples on resonance.

Also shown in the same panel is the effect that the potassium load has on the

cooling trajectory of 87Rb. The path starts to deviate at the point at which the load

becomes a significant fraction of the total atom number (NRb/NK . 10), bending to

almost coincide with the potassium cooling path towards the end of evaporation. This

convergence also suggests that with this particular potassium load we are reaching the

limits of the effectiveness of sympathetic cooling. Further evaporation past the point at

which the heat capacities of the two species becomes comparable will have little benefit

for the further cooling of potassium.

Fig. 3.5b shows the temperature achieved at the end of sympathetic cooling for

various final amounts of potassium in the QUIC trap. For low NK the temperature

tends to the 2.9µK attained by rubidium when cooled alone. The quantity of potassium

that we choose to load into the MOT is determined by the amount that can be loaded

into the CDT. This in turn depends on the temperature of the atoms being transferred

from the QUIC trap, as is discussed below. A sequence of images taken at different

points through the sympathetic cooling process is shown in Fig. 3.6, highlighting the

increase in phase-space density of 39K with minimal atom loss.

3.4 Quantum degeneracy in the CDT

3.4.1 Cooling methods in the dipole trap

Once the atoms have been transferred to an optical trap they are no longer in a state-

dependent potential. This gives us the opportunity to bring Feshbach resonances into

play by transferring the atoms to a suitable state and applying a uniform magnetic field.

We are thus provided with two clear options: continue with sympathetic cooling, or

remove the remaining rubidium and directly evaporate potassium. Sympathetic cooling
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a b c d

Figure 3.7: Illustration of equipotentials for a cut through the bisection point of a crossed
optical dipole trap. The beams are horizontal and are perpendicular to one another, with the
cut made vertically such that one beam is entering the page, the other is parallel to it. The
lighter the colour the higher the total potential. The field of view is 2w0 square. a High-optical-
intensity regime, where energetic atoms are lost along the beams. b Decreasing the intensity
leads to a scenario where atoms may be lost along the beams or from the bottom of the trap.
c Low-optical-intensity regime, where energetic atoms are lost from the bottom of the trap. d
The trap eventually vanishes with further reduction of the intensity.

has the added enticement here of an interspecies Feshbach resonance that may be used

to increase the cross-thermalisation rate [98]. Up until this point our experimental

process has, in essence, closely followed that of the Inguscio group [7], where the former

method is successfully applied. Given theirs is the only system previous to ours to have

successfully condensed 39K, it might seem sensible to bow to experience and continue

to follow their course. This might also seem logical given the high efficiency observed in

the sympathetic cooling stage in the QUIC trap. However, as might be deduced from

the fact that we aimed to use up all of the rubidium in the previous step, we choose to

directly cool potassium. The considerations that informed this decision are discussed

below.

The main factor is the competition between the optical and gravitational potentials,

shown in Fig. 3.7. In the high-optical-intensity regime the effect of gravity is negligible

and energetic atoms are lost along the beams1, while in the low-optical-intensity regime

gravity distorts the Gaussian optical potential such that atoms fall from the bottom

of the trap. The red detuning of the beam produces a stronger optical potential for

rubidium than for potassium. The effect of gravity is also stronger for the more massive

rubidium atoms. This means that above a certain laser power the trap depth will be

greater for rubidium, while below this crossover point it will be greater for potassium.

Sympathetic cooling is only possible in the latter regime, i.e. where mainly rubidium

atoms are evaporated.

In the limit that the distance from the centre of the trap to the wall of the science

cell is small compared to the Rayleigh length of our focussed trapping beams we may

approximate the combined optical and gravitational potential for our trap geometry as

U(x, y, z) = mgw0

[
z

w0
− α

2
e−2(x2+z2)/w2

0 − α

2
e−2(y2+z2)/w2

0

]
, (3.2)

1The Rayleigh length, zR = πw2
0/λ , for typical focal beam waists, w0 , and laser wavelengths, λ , is

on the order of centimetres, so trapping along the beam axis is negligible.
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where α is the ratio A/mgw0, A being the peak optical potential shift defined in §2.8.3.

Here α has simply been substituted into equation (2.44). By switching to dimensionless

variables z′ = z/w0 and U ′ = U/mgw0 this reduces to

U ′(0, 0, z′) = z′ − αe−2z′2 (3.3)

and

U ′(0,∞, z′) = z′ − α

2
e−2z′2 (3.4)

for the relevant cases we will consider here. We can now find some useful system

parameters. For example, by differentiating (3.3) twice with respect to z′ we find that

the minimum gradient of the total potential is at z′ = −1/2 . By setting the gradient

at this point to be zero we obtain the value of α at which the atoms are no longer

trapped, α0 =
√
e/2 ≈ 0.82 .

To find the crossover point where the trap depth is equal for our two atomic species

we first note that αRb = (ARbmK/AKmRb)αK . The trap depth at this point for

potassium is the difference in potential between the local minima z′1 and z′2 of (3.4) and

(3.3) respectively, while for rubidium it is the difference between the local maximum

z′3 and local minimum z′4 of (3.3). Casting the equations in terms of αK, the condition

that we are at extrema gives us

1

2
z′1e
−2z′21 = z′2e

−2z′22 =
ARb

AK

mK

mRb
z′3e
−2z′23 =

ARb

AK

mK

mRb
z′4e
−2z′24 = − 1

4αK
, (3.5)

while equating the trap depths at this point means we must also satisfy(
z′1 −

αK

2
e−2z′21

)
−
(
z′2 − αKe

−2z′22
)

=
mRb

mK

[(
z′3 −

ARb

AK

mK

mRb
αKe

−2z′23

)
−
(
z′4 −

ARb

AK

mK

mRb
αKe

−2z′24

)]
.

(3.6)

From (2.44) we may use

ARb

AK
=

ΓRb

ΓK

λ4
Rb

λ4
K

(
λ2

K − λ2

λ2
Rb − λ2

)
≈ 1.172 (3.7)

for λ = 1070 nm. Solving (3.5) and (3.6) simultaneously, we find the value of αK at

which the trap depth is equal for the two species to be ≈ 4.01 (with the corresponding

z′i values).

Combining this result with the values found for z′1 and z′2 we find that the trap

depth at the crossover point is given by

Uc ≈ 1.97mKgw0 . (3.8)

Considering this in terms of thermal energy, we find Uc/w0 ≈ 0.091µKµm−1. To have

a reasonable starting η (& 5) in the trap with an initial temperature of 6µK we need
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Figure 3.8: Displacement of the trap minima for 39K (solid blue line) and 87Rb (solid red
line) with respect to the centre of the optical potential for varying αK. Displacement is given
in terms of dimensionless distance z′ = z/w0 . The atoms become untrapped at z′ = −0.5 ,
i.e. when the minimum has been displaced by half the beam waist. The dashed lines represent
a single vertical thermal radius either side of each trap minimum for η = 8, showing that the
clouds no longer significantly overlap for αK . 1.86 .

a trap depth of at least 30µK. To also have a trap in which sympathetic cooling may

be used straight from loading we must therefore use a beam waist of at least 30/0.091

= 330µm. However, that would require 40 W trapping beams to produce the required

depth, far greater than the power available to us with our laser.

Also worth noting is the fact that, as in the QUIC trap, the difference in the gravi-

tational sag between the two species prevents sympathetic cooling past a certain point.

Fig. 3.8 shows how the trap minima for the two species vary with αK, with the corre-

sponding extent of each cloud to a thermal radius RT , assuming η = 8. Sympathetic

cooling ceases to work when the thermal radii no longer overlap, below αK ≈ 1.86.

Thus sympathetic cooling is only possible in the range 1.86 . αK . 4.01. Fig. 3.9

shows a summary of these results for our chosen waist of 140µm and laser wavelength

of 1070 nm. The 140µm waist is the largest we could use to have a 30µK trap depth

when using the full available optical power.

It is relatively simple to extend the above to calculate equivalent parameters for

other species in crossed dipole traps, and it is hoped that the above discussion is

useful for anyone considering sympathetic cooling between any two species in such a

configuration. Note that the calculations are valid for horizontal beams only, but that

the bisection angle of the two beams does not matter. The upshot is that we must

abandon any hopes of sympathetically cooling 39K in the CDT, and instead use the

Feshbach resonance in the |1, 1〉 state to allow efficient forced evaporative cooling.
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Figure 3.9: CDT depth versus laser power for both 39K (solid line) and 87Rb (dashed line) for
a beam waist of 140µm and wavelength of 1070 nm. The ‘kinks’ in each plot (at d and f) occur
at the boundary between two regimes where different mechanisms limit the trap depth. At
high power the atoms are least confined along the beams, whereas at low power they are least
confined vertically due to the distortion of the trap due to gravity (see Fig. 3.7). The table
gives the values of αK and corresponding power per beam P at six points of interest. a and
b are the points at which 39K and 87Rb fall from the trap respectively, d and f the respective
kinks already mentioned, while c is the lower limit of sympathetic cooling of 39K (see Fig. 3.8)
and e is the upper limit, i.e. the crossover point discussed in the text.

3.4.2 Transfer to the CDT

The centre of the QUIC trap during standard operation is offset from the centre of

the science cell towards the Ioffe coil by several millimetres. Unfortunately, the coil

mounts around the science cell limit the CDT position to a small region near the centre

of the science cell, so the QUIC trap must be moved before transfer to the CDT can

proceed. The current is reduced in the quadrupole coils and increased in the Ioffe and

bias coils over the course of one second, reducing the tightness of the trap slightly, but

repositioning it at the science cell centre. Sympathetic cooling is not carried out in this

position as the shallowness of the trap would require the use of a longer evaporation

sweep and the Ioffe coil would soon overheat with the increased steady current.

Once the QUIC trap is in position the CDT power is increased linearly to its max-

imum value over the course of 1 s. The currents in the three QUIC coils are ramped

down by a factor of two in the subsequent second before being turned off abruptly,

leaving the atoms trapped in the CDT, which at this point has a depth of ∼ 30µK for

potassium and ∼ 35µK for rubidium (see Fig. 3.9).

The number of 39K atoms that are transferred to the CDT as a function of the

number in the QUIC is shown in Fig. 3.10. A constant transfer efficiency of ∼ 60 %

is observed for samples with a temperature of up to 6µK (equivalent to η ∼ 5), above

which the efficiency rapidly drops off. This constant factor is due to the imperfect
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Figure 3.10: Transfer efficiency from QUIC to CDT. The numbers at each point are the
temperatures in the CDT (QUIC).

overlap between the CDT and QUIC potentials. Given the cigar-like (prolate spheroid)

shape of the QUIC potential and the squashed-sphere (oblate spheroid) shape of the

CDT potential this mismatch is difficult to overcome, although using a large beam

waist helps. The beam waist should be compared with twice the thermal radius of the

cloud at the end of sympathetic cooling in the QUIC trap, roughly 160 (500)µm in

the radial (axial) directions. For comparison, the loading efficiency for a 100µm beam

waist was found to be limited to ∼ 20 %, saturating at around a third of the available

CDT power.

In practice we load 8× 106 potassium atoms into the CDT from the 13× 106 that

are left in the QUIC after sympathetic cooling. Any remaining rubidium atoms are

removed from the trap to prevent the occurrence of spin-exchange collisions during the

state transfer of the 39K atoms from the |2, 2〉 to the |1, 1〉 state. This is accomplished

with a strong 2 ms pulse of resonant imaging light, which does not noticeably affect the

trapped potassium atoms.

3.4.3 Evaporation in the CDT

All of the atoms are transferred to the |1, 1〉 state by a 35 ms Landau-Zener sweep of

the bias magnetic field while applying RF radiation at 469.3 MHz, as described in §2.9.

To increase the thermalisation rate of the potassium we ramp up the current in the

Feshbach coils in 5 ms to produce a uniform magnetic field of 393.3 G, resulting in a

scattering length of 135 a0 . The ramping time is kept short to avoid lingering near the

narrow (∆ = −0.47 G) Feshbach resonance at 25.9 G [81].

Forced evaporation is then carried out with a six-second exponential sweep of the

CDT beam power to its final value with a decay constant of 1.4 s , typically followed

by another second of plane evaporation. The beam power is only required to span a

112



3.4 Quantum degeneracy in the CDT

single order of magnitude (see Fig. 3.9), so is easily stabilised with our PID feed-back

loop. The condensation point is reached for a beam power of ∼ 1.5 W, while further

reduction increases the condensed fraction to create quasi-pure BECs.

3.4.4 Number calibration

In order to accurately determine the number of atoms in the condensate we need to

calibrate the imaging absorption cross section as mentioned in §2.10.6. This requires a

theoretical knowledge of the critical number Nc, which for an ideal gas in a harmonic

trap is given by (1.17). We can tune the scattering length to a small value so that the

shift of Nc due to interactions (discussed in Chapter 5) is well quantified within mean-

field theory. The finite-size shift [99] (of around 2 %) can also be taken into account.

However, the combined optical and gravitational potential of the CDT is by no means

perfectly parabolic. Firstly, the shape of the trap is different (or ‘anharmonic’), and

secondly the trap depth is not infinite. To account for this we must use both the true

expression for the trapping potential in our calculations and a truncated momentum

distribution.

Going back to the semi-classical approximation of §1.2.1 we again set µ = 0 in

equation (1.6), but now use

ε(r,p) =
p2

2m
+ V (r) (3.9)

where V (r) is given by adding an offset to the potential given in (2.44) such that at

the trap minimum (situated at x = y = 0 , z = z0) the potential is zero. This results in

V (r) = mg(z − z0)− A

2

[
e−2(x2+z2)/w2

0 + e−2(y2+z2)/w2
0 − 2e−2z2

0/w
2
0

]
. (3.10)

Making the substitutions

q =
p2

2mkBT
and γ =

V

kBT
(3.11)

in (1.6) and integrating over both q and space gives the critical number as

Nc =
1

λ
3/2
T

2√
π

∫∫ qmax

0

q1/2

eqeγ(r) − 1
dqdr (3.12)

within the bounding surface γ(r) = Vmax/kBT = η . Vmax is the trap depth, such that

η is defined as for evaporative cooling. Assuming the cloud is collisionally transparent,

the maximum momentum for a trapped atom at point r is given by

p2
max

2m
= Vmax − V (r) , (3.13)

or equivalently

qmax = η − γ(r) . (3.14)
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Figure 3.11: The anharmonic shift in critical number for a set of typical experimental param-
eters. Black points are calculated with the momentum cutoff, red points represent the upper
bound where qmax → ∞ . The true potential has a larger volume than the extrapolated har-
monic potential so this tends to increase the critical number. The momentum cutoff becomes
important below η ≈ 10 where the two lines diverge. As T tends to zero the critical number
tends to that of the harmonic case as expected.

Setting this as the upper q limit we can now numerically integrate (3.12) and compare

the critical number with that given by the ideal harmonic trap in (1.17).

In this comparison, the harmonic trap extrapolated from the quadratic terms of

the Taylor expansion around the trap minimum is considered. The effect of the altered

shape of the trap is to increase the trap volume and therefore increase the critical

number, while the momentum truncation reduces the available states and therefore

also Nc . The truncation only becomes important when the thermal energy per atom

becomes a significant fraction of the trap depth, at an η of . 10. In reality, the

expression for qmax given above is not exact as collisions do occur within the cloud.

The calculated value of the ‘anharmonic shift’ is therefore a lower bound, and an

upper bound can be found by setting qmax =∞. However, under typical experimental

conditions the values are similar and we are closer to the collisionless regime.

The resultant anharmonic shift of Nc for typical experimental conditions is positive

and in the range 5-10 %. The value depends strongly on the temperature of the cloud,

while the shape of the trap itself also varies depending on the power in the dipole beams.

The shift is therefore calculated for specific sets of experimental parameters as required.

It is shown in Fig. 3.11 for a typical trap geometry over a range of temperatures. As

expected, as T → 0 the critical number tends to the value for the ideal harmonic trap.

The freshly determined Nc can be compared with the total optical density of an

absorption image of a weakly interacting gas at the critical point, allowing calibration of

the imaging absorption cross-section. The total OD can be found either by summing

the OD values of the individual pixels or by fitting the image with the g2 function

(2.59). The latter method also allows the temperature of the cloud to be determined,
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Figure 3.12: Condensation of 39K atoms. From left to right the number of atoms in the
BEC varies from 1.5× 105 to 4.2× 105, while the condensate fraction grows from 20 % to 80 %.
The bottom panels show the line densities of the clouds, obtained by integrating the images
along the vertical direction, emphasising the signature bimodal distribution of a condensate
and thermal gas. Images are taken after 20 ms time-of-flight for a fixed exposure duration. The
changing aspect ratio of the condensate reflects the increasing importance of the gravitational
potential at low CDT powers.

which is required to calculate Nc in the first place. Our initial investigations showed

that the cross-section was reduced by factors of 1.9±0.3 and 1.5±0.3 for 39K and 87Rb

respectively. These values are liable to change over time, with alterations in the imaging

polarisation for example. A more careful calibration, carried out when investigating

very weakly interacting 39K clouds during the saturation investigations of Chapter 4,

provided an updated value of 1.6 which has remained stable ever since.

Condensate and thermal atom numbers are extracted from absorption images where

both are present using a bimodal fit, combining the g2 function with the two-dimensional

Thomas-Fermi distribution function (2.64). Typically all fit parameters (e.g. widths,

amplitudes, centres) are allowed to vary within user-defined upper and lower bounds.

These fits are used to assess the results of the final stage of evaporative cooling. Sam-

ples are imaged as described in §2.10, usually after around 20 ms TOF. This is near

the limit of the TOF available to us for horizontal imaging as the imaging light passes

through the centre of the Ioffe coil, such that further TOF would cause the atoms to

fall out of the path of the imaging beam. Once the raw images have been acquired they

are immediately processed into OD images, ready for fitting.

3.4.5 Condensation

The condensation point is typically reached with ∼ 106 atoms at around 400 nK, at

which point ω̄ ∼ 2π×85 Hz . Further reduction of the beam power results in quasi-pure
39K condensates of over 4 × 105 atoms. Sample shots for various condensed fraction

are shown in Fig. 3.12. These are the largest 39K condensates to have been reported
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to date, representing a significant improvement on past work; the first 39K condensates

reported contained 3× 104 atoms [7], later being increased to around 105 in the same

system [12, 100]. Though condensate size isn’t the be all and end all for a useful cold

atoms system it is useful to be able to experiment on large samples, a basic example

being the small fractional error on Nc which is useful for the experiments discussed

in Chapters 4 and 5. The final atom numbers owe much to the high efficiency of

sympathetic cooling in the QUIC trap.

We have created condensates by evaporation with scattering lengths of up to ∼
350 a0 , but the largest and most stable condensates are produced for scattering lengths

of around 100 a0 , similar to that of 87Rb. In the same system we can directly cool

rubidium to produce condensates of up to 8 × 105 atoms when the alignment of the

CDT is optimised for the transfer of rubidium from the QUIC trap.

3.4.6 Summary

The experimental sequence for producing 39K condensates is summarised in Fig. 3.13.

Typical atom numbers and temperatures are specified at several stages of the process.
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a Magneto-optical trap loaded from

vapour of K and Rb. Followed by 40 ms

near-resonant MOT to reduce K tem-

perature.

NK∼2×108, TK∼1−2 mK
NRb∼4×109, TRb∼300µK t ≈ 15 s

b Magnetic field removed for short ‘op-

tical molasses’ stage to increase phase-

space density.

TK∼600µK
TRb∼50µK t ≈ 6 ms

c Optically pump atoms into |F,mF 〉 =

|2, 2〉 hyperfine ground state.

K pumping efficiency∼ 65%
Rb pumping efficiency∼ 80% t ≈ 200µs

d Ramp up quadrupole coil for purely

magnetic trapping, then transport

atoms to the science cell using the

translation stage.

t ≈ 2 s

e Load atoms into QUIC magnetic trap

by ramping up Ioffe and anti-bias coils.

NK∼2.5×107, TK∼200µK
NRb∼4×108, TRb∼100µK t ≈ 5 s
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3.4 Quantum degeneracy in the CDT

6.8 GHz

469 MHz

f Evaporate Rb by applying a microwave

radiation sweep to drive the |2, 2〉 →
|1, 1〉 transition. K sympathetically

cooled by elastic collisions.

NK∼1.4×107, TK∼5µK t ≈ 60 s

g Load atoms into dipole trap by ramp-

ing up power and turning off QUIC

trap. Remove remaining Rb with reso-

nant light pulse.

NK∼8×106, TK∼6µK t ≈ 2 s

h Transfer atoms to the |1, 1〉 state by

sweeping the bias magnetic field while

applying 469 MHz radiation.

t ≈ 35 ms

i Tune scattering length to ∼ 135 a0 with

Feshbach coils. Apply forced evapora-

tion sweep by decreasing optical power.

NK∼106, n(0)λ3
T ≈2.6 t ≈ 6 s

j Release atoms from trap and image

them with a resonant light pulse after

∼ 20 ms time-of-flight.

t ≈ 20 ms

Figure 3.13: Summary of the main experimental stages to produce quantum degenerate 39K.
A brief description of each stage accompanies each illustration, along with typical parameters
at the end of the stage. The approximate step duration t is framed in each caption.
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Chapter 4

Lack of saturation in a Bose gas

“ The Right Hon. was a tubby little chap who looked as if he had been

poured into his clothes and had forgotten to say “when”.”

– P. G. Wodehouse (Very Good, Jeeves)

4.1 Saturation: another approach

The phenomenon of Bose-Einstein condensation is inextricably linked to the concept of

saturation; that is, saturation of the available excited states that the atoms may occupy.

If the number of identical bosons in the system exceeds the number of available excited

states, the only place for surplus bosons to go is the ground state. At this critical point

the excited states are said to be saturated, heralding the onset of macroscopic ground

state occupation - the BEC.

How saturation comes about for an ideal gas in a three-dimensional harmonic trap

was shown in Chapter 1 by considering the semi-classical distribution. This descrip-

tion has many uses as has already been made apparent (hence its early introduction).

However, a simpler semi-classical concept may be used to clarify under what conditions

a BEC may occur. We concern ourselves with the single-particle energy states of the

system, but instead of considering the individual quantised states we ‘smooth out’ the

fine details by considering a continuous density of states, allowing us to perform an

integral rather than the more difficult sum. Of course, this approximation does not

take account of the ground state, which is again treated as a special case.

To illustrate the concept we may consider once more the three-dimensional harmonic

oscillator, precisely as treated in §2.1.1 of [29]. In this case the potential is given by

V (r) =
1

2
m
(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)
, (4.1)

having the familiar quantised energy levels

ε(nx, ny, nz) = (nx +
1

2
)~ωx + (ny +

1

2
)~ωy + (nz +

1

2
)~ωz . (4.2)
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4.1 Saturation: another approach

Here the nk are positive integers. At this point we make the semi-classical approxima-

tion (recalling as previously stated that it is only good for kBT � ~ω) by introducing

the continuous variables εk = ~ωknk and neglecting the zero-point motion (the inac-

curacy introduced by this simplification is addressed in §5.2.1). The total number of

excited states G(ε) up to an energy ε is then given by

G(ε) =
1

~3ωxωyωz

∫ ε

0
dεx

∫ ε−εx

0
dεy

∫ ε−εx−εy

0
dεz =

ε3

6~3ωxωyωz
, (4.3)

from which the density of states g(ε) naturally follows as

g(ε) =
dG(ε)

dε
=

ε2

2~3ωxωyωz
. (4.4)

In order to calculate the total number of available excited states NT , we must mul-

tiply the density of states by the Bose occupation factor (or Bose-Einstein probability

distribution function) f(ε) , reproduced here for convenience:

f(ε) =
1

e(ε−µ)/kBT − 1
, (4.5)

before integrating the product over all energy space to give

NT =

∫ ∞
0

g(ε)f(ε)dε . (4.6)

By inserting (4.4) and (4.5) into (4.6) and taking the limit µ→ 0 we retrieve the critical

atom number N0
c for a given temperature T as

N0
c = ζ(3)

(
kBT

~ω̄

)3

, (4.7)

exactly replicating (1.17), the result obtained via the semi-classical distribution.

To extend this description to other trap geometries we consider a generalised version

of (4.1) describing a d-dimensional power-law potential,

V (r) =
d∑

k=1

~ωk
2

∣∣∣∣ rkak
∣∣∣∣nk

,where ak =

√
~

mωk
(4.8)

and the potential exponent along each axis k is given by nk . It is clear that (4.1) is

recovered simply by setting d = 3 and each nk = 2 . It is shown in [101] and [102] that

in general the density of states for such a system follows a simple power law,

g(ε) =
Csε

s−1

Γ(s)
, (4.9)

where

s =
d

2
+

d∑
k=1

1

nk
(4.10)
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and

Cs =
2s

πd/2

d∏
k=1

Γ(1 + 1/nk)

(~ωk)1/2+1/nk
. (4.11)

So, for example, the three-dimensional harmonic oscillator with d = 3 and nk = 2 gives

an s of 3 and hence the density of states is proportional to ε2 , as confirmed by (4.4).

The corresponding value of Cs may be read from (4.4) (recalling that Γ(3) = 2) or

calculated from (4.11). So for the commonly investigated three-dimensional scenarios

of a harmonic trap and a hard-walled box we find, respectively,

Cs =

{ (
1
~ω̄
)3

for d = 3, nk = 2, s = 3(
m
2π

)3/2 V
~3 for d = 3, nk =∞, s = 3/2 .

(4.12)

In the latter equation V is the volume of the box, simply given by

V = (2 ā)3 where ā = (a1a2a3)1/3 . (4.13)

So where does this leave us with the conditions for saturation? The simple conclu-

sion is that if the total number of available excited states is a finite value (however large

or small) then it must be at least theoretically possible for a BEC to exist. We must

therefore evaluate (4.6) using the density of states for the general power-law potential

(4.9). Employing the substitution x = ε/kBT with µ→ 0, this evaluates to

NT =
Cs(kBT )s

Γ(s)

∫ ∞
0

xs−1

ex − 1
dx (4.14)

= Cs(kBT )s
∞∑
p=1

1

ps
, (4.15)

where (1.9) has been used. The sum in (4.15) is the well-known hyperharmonic series

(a generalisation of the divergent harmonic series) which converges to ζ(s) only for

s > 1 , and is divergent otherwise1. This is illustrated by Fig. 4.1 , where the integrand

of equation (4.14) is shown for various values of s. Therefore, macroscopic occupation

of the ground state only occurs for s ≤ 1 at T = 0 , while the critical number for s > 1

is given by

N0
c = Cs(kBT )sζ(s) . (4.16)

This leads directly to a simple expression for condensed fraction,

N0

N
= 1−

(
T

T 0
c

)s
, (4.17)

a relationship that is often used for temperature calibration. The conclusions of the

above discussion are simple but far-reaching; BECs can occur in any three-dimensional

trap, but not in a uniform two-dimensional system, while in one dimension the trap

1This is easily shown using the integral test for convergence.
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Figure 4.1: Integrand of equation (4.14) for s = 0 → 9/2 in steps of 1/2. Lines representing
values of s under which the area is infinite (s = 0, 1/2, 1) are coloured red, the others black.
The area under these curves is Γ(s)ζ(s). Though the value of the function tends to infinity for
s = 3/2 , the bounded area is finite.

must be stronger than a harmonic trap (i.e. nx < 2).

This standard view of Bose-Einstein condensation, as presented in statistical physics

textbooks (see e.g. [19, 29, 30, 103]) and indeed in §1.2 of this thesis, is naturally intro-

duced along the lines of the original predictions of Einstein. In this picture the number

of ideal bosons in excited states, NT , reaches a limiting value, Nc, after which any ad-

ditional particles must occupy the ground state, forming a Bose-Einstein condensate.

This comes about because the available excited states become saturated. The number

of particles occupying the ground state N0 is microscopic until this saturation point is

reached, resulting in the simple occupation dependence on total number N shown in

Fig. 4.2.

4.2 Context

In reality we can never produce the exact conditions prescribed by Einstein. This ideal

scenario requires non-interacting atoms in thermal equilibrium, but interactions are

necessary for thermal equilibrium to exist. In fact, because of this the ideal statistical

phase transition proposed by Einstein has never been experimentally confirmed. How-

ever, weakly interacting Bose gases in harmonic traps are generally believed to closely

portray this picture. It is accepted that the presence of weak repulsive interactions

produces slight modifications, such as the small shift in Tc discussed in Chapter 5, but

that the essential description holds true.

As such, a saturated thermal component is often heralded as a signature of Bose-

Einstein condensation, as it was for the groundbreaking first observations of condensa-
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NT N0
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0 Nc
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N
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Figure 4.2: State populations of an ideal Bose gas. At fixed temperature, all the atoms
accumulate in the thermal component until all available excited states are filled, after which all
further atoms populate the ground state.

tion in a solid-state system [104] and of photons in a microcavity [105]1. An attempt to

closely follow Einstein’s idea of a phase transition brought about at constant temper-

ature while increasing the atom number was also believed to directly show saturation

behaviour [106]2.

However, strong deviations from the ideal case have already been shown to exist.

The T 3 dependence of Nc in a harmonic trap leads to the expression

N0

N
= 1−

(
T

T 0
c

)3

(4.18)

for the condensed fraction in an ideal system - equation (4.17) with s = 3 . Inves-

tigations carried out shortly after the first demonstrations of condensation in dilute

atomic gases seemed to show consistency with (4.18) [107, 108]. More recently though

it has been shown that negative shifts in the detected condensed fraction below Tc of

∼ 20 % (larger in relative terms) can be seen in a standard setup [109]. This is far

from a small correction, and directly corresponds to non-saturation of the gas. Also,

while studying the critical point of a harmonically trapped two-dimensional Bose gas

at ENS [110], the authors compared their findings with a three-dimensional gas [111].

They were surprised to see a value of dN0/dN substantially lower than unity past the

condensation point.

1However, Fig. 3 of [104] and Fig. 2 of [105] show growing thermal components as a condensate is
formed.

2In this reference, a spinor gas was studied in which condensation was brought about in one spin state
by transferring atoms from two others in which condensates were already present. The thermal atoms
therefore experienced a potential already modified by the existing condensates, probably obscuring any
saturation effects due to the emerging condensate.
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4.3 Experimental procedure

The purpose of the investigation described in this chapter is twofold: firstly to show

just how large an effect repulsive interactions have on the saturation picture of Bose-

Einstein condensation, and secondly by studying a range of interaction strengths (at

which thermal equilibrium is ensured) to extrapolate to the non-interacting limit to see

if the saturation picture is recovered. This is made possible by our ability to decouple

the scattering length from other parameters, a feature which is of course not available

in many systems.

Much of the confusion surrounding saturation stems from a frequent lack of differ-

entiation between saturation of atom number and saturation of available excited states.

In an ideal gas these terms are equivalent, but when repulsive interactions are included

they are not. Considering a mean-field description, the presence of the dense conden-

sate leads to a flattening of the effective potential seen by the thermal atoms such

that the trapping volume is increased, i.e. more excited states become available. In

this picture a condensate does indeed form because of saturation of the excited states,

but as atoms are added at constant temperature the thermal atom number must carry

on increasing along with condensate number. We take ‘saturation’ to refer to atom

number, and therefore ‘non-saturation’ to refer to deviations from the ideal theory.

4.3 Experimental procedure

The actual experimental concept is a simple one. Partially condensed clouds of 39K are

created in the CDT as described in Chapter 3, using the Feshbach resonance to tune

the scattering length to 135 a0 for the final stage of evaporative cooling. At this point

the optical power is ramped to a final fixed value, after which the scattering length is

tuned to its measurement value (Fig. 4.3). The sample is then held in the trap for

a variable amount of time, up to several tens of seconds. During this period atoms

are gradually lost from the trap due to collisions with the background vapour, photon

scattering from the optical trap and three-body recombination. The trap depth for

each series is chosen such that the heating associated with these processes is cancelled

by residual cooling due to plane evaporation, producing a near-constant temperature

(Fig. 4.4). Consequently the trapping frequencies vary between datasets, lying in the

range ω̄ = 2π×60-80 Hz. Elastic scattering allows the remaining atoms to rethermalise

at a far greater rate than particles are lost, and an equilibrium distribution between the

thermal and condensed components is maintained. The cloud is then released from the

trap and imaged after ∼ 20 ms time-of-flight to allow number and temperature data to

be extracted.

4.3.1 Image fitting for saturation data

Condensate population N0 and thermal population NT are extracted using a bimodal fit

to the OD images, while the total number N is found separately by a direct summation
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Figure 4.3: Scheme of the relevant final stages of the experimental sequence. The solid lines
show the time dependence of the CDT beam power and Feshbach field for a sample sequence,
while the dashed lines show the range of values covered by the complete set of experimental
series. At the end of the exponential evaporative cooling ramp in the CDT the power is held
for one second before it is ramped to its final value in half a second. The Feshbach field is
then ramped to its measurement value, after which the atom number is allowed to decay over
a varying period before time-of-flight imaging.
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Figure 4.4: Variation of system parameters with trap hold time for the sample data series
shown in Fig. 4.5 and considered throughout this chapter. a Total atom number in the trap
N versus hold time. The data is fitted with a double exponential to guide the eye. b The
corresponding temperature T . The temperature shows no drift for N > Nc and has a standard
deviation of only 3 nK.
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over the density distribution. The value of N0 + NT was found to be within 0.5 %

of N for every usable image. A separate g2 fit is used to find the temperature, as

interactions affect the ideal thermal distribution function. A region around the centre

of the distribution is excluded from the fit as interaction effects are strongest in the high

density regions and around the condensate [78, 108]. We choose to exclude the atoms

within one thermal radius of the centre having found this to give stable temperature

measurements after similar studies to those found in §II.B of [73]. A variety of data

was fitted using a range of exclusion radii, and a plateau region was observed where

temperature measurements remained constant. Excluding too large a region produces

noisy data due to the loss of information, so the chosen radius was the minimum that

safely lay within the plateau. The BEC lies within the exclusion region for all our

images. The bimodal fit nevertheless gives accurate number information because of the

quantity of free parameters.

4.3.2 Data processing

A total of 18 data series were taken with 39K at temperatures in the range 115-284 nK

and scattering lengths in the range 40-356 a0 . Each series consists of up to ∼ 100 data

points, so to speed up processing images were automatically removed according to a

set of criteria. First any blank images and those where the fit is clearly poorly matched

to the density distribution were removed manually. The remaining images were then

masked if the total peak optical density exceeded 3, the detected N0 was lower than a

nominal value, and if the condensate or thermal cloud widths lay further than several

standard deviations from their averages over the entire series.

Though the temperature is fairly stable over each series as previously discussed, we

apply small corrections to account for the remaining drifts. Instead of assigning each

image its individually measured temperature for this correction, we use a two-stage

fitting process based on image index and N0. The latter method is used because of the

likelihood that any residual temperature fluctuations recorded are due to the fitting

process rather than real effects. The image index designates the ordinal position of

each image in the series in terms of the order in which they were acquired. This is

needed as the temperatures of clouds produced by the system tend to decay slightly

over time1. N0 and image index do not scale together as the hold times for each series

were taken in a random order in an attempt to reduce systematic errors.

The temperature assignment works as follows. The dependence on index tends to

be strongest, so firstly the measured temperature Tmeas is plotted against index i. An

exponential decay is used to fit the data, resulting in Ti(i). We then plot Tmeas/Ti(i)

against N0 to reveal to what degree the temperature shifts from the index correction

with condensate size. A linear fit is used to give the factor f(N0). Each image is then

assigned a temperature T ′(N0, i) = f(N0) × Ti(i). The component atom numbers are

1This is most likely due to the gradual heating of optical components in the system.
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Figure 4.5: Lack of saturation of a Bose gas for a sample series taken with a = 135 a0 and
T = 177 nK. NT (red points) and N0 (blue points) against total number N . The solid lines
show the predictions for a saturated gas (as displayed in Fig. 4.2). The critical number Nc is
marked by the vertical dashed line.

scaled with T ′ to the series temperature T , where T is calculated by plotting the raw

temperature against N0 and using a linear fit to give the N0 → 0 limit. The form of

the scaling is based on a theoretical model as discussed later.

4.3.3 Results

A sample dataset taken with a = 135 a0 and T = 177 nK is compared with the results

for an ideal gas in Fig. 4.5. The difference between the two is conspicuous; as the total

atom number is increased from the critical number of ∼ 200,000 to 450,000 only about

half of the additional atoms form a condensate.

The full set of 18 data series is shown in Fig. 4.6, where N0 is plotted against the

number of excess atoms above the critical point, N − Nc . The solid line shows the

situation for a saturated gas, N0 = N − Nc . Deviation from the ideal case is clear

for every set of data, with the effect becoming more pronounced as both T and a are

increased. The dependence of N0 with N is also clearly not linear. To start interpreting

these findings more clearly we look to mean-field theory.

4.4 Hartree-Fock Approximation

The simplest way to include interaction effects within a theoretical construct is by use of

the Hartree-Fock approximation [112]. Thermal atoms are treated as a non-interacting

gas with density nT (r) confined by the combination of the trapping potential V (r)

and the self-consistent interaction potential 2g(nT (r) + n0(r)) . The situation may

be simplified by taking advantage of the small density of the thermal component. If

129



4.4 Hartree-Fock Approximation

0 100 200 300 400
0

50

100

122nK, 40a0 
126nK, 62a0   
115nK, 135a0 
121nK, 221a0 
157nK, 93a0   
152nK, 135a0 
184nK, 62a0   
181nK, 93a0 
177nK, 135a0 
171nK, 221a0 
188nK, 135a0 
186nK, 184a0 
181nK, 274a0 
233nK, 135a0 
260nK, 135a0 
251nK, 221a0 
267nK, 274a0 
284nK, 356a0 

N
0 (t

ho
us

an
ds

)

N - N
c
 (thousands)

Figure 4.6: Deviation from the saturation picture for a variety of interaction strengths and
temperatures. We plot N0 versus N − Nc where Nc is experimentally determined for each of
the 18 series. The temperature and scattering length for each series is encoded in the colour of
the markers and are given in the accompanying legend. The solid line marks the prediction for
a saturated gas, N0 = N −Nc.

the effect of thermal atoms on the condensate is neglected then n0(r) is given by the

Thomas-Fermi distribution of equation (1.26). If the mean-field energy of the thermal

atoms 2gnT (r) is also neglected1 the resulting effective potential is simply given by

Veff(r) = V (r) + 2gn0(r) = |V (r)− µ0|+ µ0 , (4.19)

where the mean-field chemical potential µ0 is given by (1.29) and the T → 0 limit is

indicated. µ0 is thus the relevant energy scale parameterising the effects of interactions.

This potential has a three-dimensional ‘Mexican-hat’ shape as shown in Fig. 4.7 .

The number of thermal atoms in the presence of N0 condensed atoms can then be

estimated using the semi-classical approximation. Equation (1.6) is reproduced here

for convenience:

NT =
1

(2π~)3

∫∫
1

e(ε(r,p)−µ)/kBT − 1
dpdr . (4.20)

By setting

ε(p, r) =
p2

2m
+ Veff(r) , (4.21)

and noting that the chemical potential is µ0 we can perform the momentum integration

of (4.20) to obtain

nT (r) =
1

λ3
T

g3/2

[
e(µ0−Veff(r))/kBT

]
, (4.22)

just as (1.15) was found in §1.2.2.

1Making this approximation means we lose the small mean-field shift in Tc and we find Nc = N0
c .
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Figure 4.7: Effective mean-field potential Veff for α0 = µ0/kBT = 0.1 (solid line) and α0 = 0
(dashed line), equivalent to the bare parabolic trapping potential. In practice most of the
thermal atoms lie outside the condensate, where V > µ0 and Veff = V .

When the temperature of the system is relatively high (compared with µ0/kB) the

majority of thermal atoms lie outside the condensate in the region where Veff(r) > µ0

and Veff(r) = V (r). It is therefore reasonable to approximate the full effective potential

as the bare trapping potential and consider only the region outside the condensate. This

does not mean that the effect of interactions may be neglected, as the chemical potential

has a value that differs substantially from the ideal value. Substituting the harmonic

form of V (r) into (4.22) and switching to dimensionless variables

α0 =
µ0

kBT
and R =

r

RT
, where RT =

√
kBT

mω2
(4.23)

we can write

NT ≈ 4π

(
RT
λT

)3 ∫ ∞
√

2α0

R2g3/2

[
e−(R2/2−α0)

]
dR . (4.24)

Here it is sensible to introduce the variable Q, where

Q2

2
=
R2

2
− α0 (4.25)

to rewrite (4.24) as

NT ≈ 4π

(
RT
λT

)3 ∫ ∞
0

Q2

(
1 +

2α0

Q2

)1/2

g3/2

[
e−Q

2/2
]

dQ (4.26)

≈ 4π

(
RT
λT

)3 ∫ ∞
0

(
Q2 + α0

)
g3/2

[
e−Q

2/2
]

dQ , (4.27)

where the binomial expansion has been evaluated to first order in α0 . The summation

form of the polylogarithmic function given by (1.9) can then be used to evaluate the
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integral of (4.27):

NT ≈ 4π

(
RT
λT

)3 ∞∑
k=1

1

k3/2

∫ ∞
0

(
Q2 + α0

)
e−kQ

2/2dQ (4.28)

= (2π)3/2

(
RT
λT

)3
( ∞∑
k=1

1

k3
+ α0

∞∑
k=1

1

k2

)
(4.29)

= (2π)3/2

(
RT
λT

)3

[ζ(3) + α0ζ(2)] . (4.30)

The first term on the right-hand side is simply the non-interacting critical number N0
c .

Dividing through by N0
c gives the important result

NT

N0
c

≈ 1 +
ζ(2)

ζ(3)
α0 ≈ 1 + 1.37α0 . (4.31)

The approximations used here are the same as those used to derive equations (120) and

(122) in [112], from which (4.31) can directly be deduced. In this reference the process

is geared towards a revised expression for the condensed fraction below Tc , a concept

that is far more prevalent in the field, though strongly linked with non-saturation.

4.5 Interpretation of results

The basic mean-field result (4.31) gives a guide to how parameters in the system should

scale, as well as providing a quantitative result to which we can directly compare our

measurements. Firstly, within each series there is a predicted scaling of NT above Nc

with µ0 ∝ N2/5
0 , indicating that plots of the relationship between NT and N

2/5
0 should

be more informative than the linear-linear format used thus far. Secondly, it gives the

temperature correction alluded to at the end of §4.3.2 from the T dependence of N0
c

and α0. This amounts to plotting NT (T/T ′)3 versus N
2/5
0 (T/T ′) . Finally, to directly

compare our results with the prediction (4.31) we find the expected slope for such a

plot within this Hartree-Fock approximation:

SHF =
dNT

d(N
2/5
0 )

≈ 1.37X , (4.32)

where

X = ξT 2a2/5 , ξ =
ζ(3)

2

(
kB

~ω̄

)2( 15

aho

)2/5

. (4.33)

Fig. 4.8 shows the result of plotting the data of Fig. 4.5 with this new approach.

The blue line shows the slope SHF = 699 with a y-intercept given by the experimental

value of Nc . The initial linear slope of NT with N
2/5
0 is in impressive agreement with

the findings of the Hartree-Fock description. As the condensate grows past ∼ 10, 000

atoms, corresponding to µ0/kBT ∼ 0.1, this agreement starts to break down, and the

lack of saturation becomes even more extreme.
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Figure 4.8: Quantifying the lack of saturation. The data of Fig. 4.5 is now displayed in the

form NT versus N
2/5
0 as guided by Hartree-Fock theory. The dotted line shows the experimen-

tally determined Nc. The blue line shows the predicted slope SHF = 1.37 ξT 2a2/5 = 699 . This
is in close agreement with the data up to N0 ∼ 10,000 . The red line shows a linear fit to the
data in the range 0.1 < µ0/kBT < 0.3 between the dashed lines. This gives a non-saturation
slope S = 1283 ± 84 . The black line provides a guide to the eye based on a second order
polynomial fit, the slope of which is indistinguishable from the Hartree-Fock slope at low N0 .

4.5.1 Popov approximation

The first port of call to account for the divergence from first-order mean-field theory for

large N0 is to use a more sophisticated theoretical description. Higher order terms can

be retained and the effects of the finite thermal density included in the self-consistent

Hartree-Fock approach, but to go beyond this it is necessary to include the effects

of low-energy excitations in the system. This is done by using the so-called Popov

approximation [113], in which the Bogoliubov terms for creation and destruction of

particle pairs are included (see e.g. [19]).

The first thing to check with this model is the low-N0 behaviour. A shift in Nc

from the ideal value is of course now detected, but aside from this the initial slope of

≈ 1.37X is indeed recovered. The results of using the Popov approximation for the

most strongly and weakly interacting conditions used in our experiments are shown on

top of the data for our sample series and the first-order Hartree-Fock prediction in Fig.

4.9. The computational method used to implement the theory is described in Appendix

C. As condensate size increases it is clear that the Popov theory predicts a departure

from the basic mean-field picture, but the effect is not great enough to fully explain

the behaviour seen in our experiments.

To deal with these larger (and experimentally more typical) condensates we there-

fore take a heuristic approach, quantifying the degree of non-saturation by defining the
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Figure 4.9: The predictions of Popov theory compared with first-order Hartree-Fock theory
(black line) and the sample data series (grey points) of Fig. 4.5. Points are now normalised to
the relevant Nc values and plotted against α0 = µ0/kBT . The blue points show the prediction
for the most weakly interacting series, T = 122 nK a = 40 a0 , the red points the prediction
for the most strongly interacting series, T = 284 nK a = 356 a0 . The Popov predictions were
calculated as described in Appendix C.

slope S = ∆(NT )/∆(N
2/5
0 ) for the range 0.1 ≤ α0 ≤ 0.3 . This slope is shown for the

data series in Fig. 4.8 by the solid red line. Though the data isn’t perfectly linear,

it is well described by S over this broad experimental range. We therefore have to

investigate the non-saturation behaviour in both this regime and that of low N0 .

4.5.2 Small condensate limit

In order to test the findings of (4.31) for small condensates, it was necessary to take

further series of data concentrating on the low N0 limit, using a slightly altered ex-

perimental method. Interactions are ‘turned off’ during time-of-flight, limiting the

expansion of the condensate to make it clearly stand out against the background of

thermal atoms in absorption imaging. This technique is described in more detail in

Chapter 5. Unfortunately, this method can not be applied when detecting larger con-

densates, as the peak optical density becomes extremely large. It is for these same

reasons that we use the slope S to quantify non-saturation for larger condensates. The

alternative method of a second-order polynomial fit to the data requires information at

both very-low and high N0.

The low N0 data series were taken for a = 56-274 a0 and T = 177-317 nK , combining

to give X values in the range ∼ 500-1300. The experimental non-saturation slope

S0 = dNT /d(N
2/5
0 ) was found in the N0 → 0 limit for each set of data for direct

comparison with SHF. The results are shown in Fig. 4.10 a , where the blue line shows

SHF = 1.37X . The agreement between the experiment and theory to within a few
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Figure 4.10: Recovery of saturation in the non-interacting limit. The non-saturation slopes
S0 and S are plotted against the dimensionless parameter X = ξT 2a2/5 described in the text.
The S0 data are directly compared with Hartree-Fock theory, SHF = 1.37X (blue line), with
no free parameters. A linear fit to the S data gives dS/dX = 2.6 ± 0.3 and an intercept
S(0) = −20± 100 , consistent with complete saturation in the ideal gas limit. The S values are
extracted from the 18 39K data series shown in Fig. 4.6 and use the same colour code. Two
87Rb data points are also shown as black squares. All vertical error bars are statistical. The
systematic uncertainty in N0 and NT of < 10 % corresponds to < 6 % uncertainty in S0 and
S values. The horizontal error bars include the 3 Hz uncertainty in the trapping frequencies
ω̄/2π and (for potassium) an allowance of 0.1 G uncertainty in the position of the Feshbach
resonance.

percent shows that, in the non-interacting limit (where µ0 = 0 for all N0), S0 would

indeed vanish. This satisfactory agreement with theory doesn’t complete the attempted

proof of saturation in the non-interacting limit, as we must now look at the large N0

regime.

4.5.3 Large condensate limit

The values of S extracted from the 18 data series of Fig. 4.6 are shown in Fig. 4.10b .

The data falls in a straight line as plotted against X, supporting the assumption that

µ0/kBT may still be used as the relevant interaction parameter. The red line shows

an unconstrained linear fit to this data. In addition, data series were also taken with
87Rb at two temperatures: 175 and 203 nK. The scattering length for this data is fixed

to 99 a0 by the background triplet scattering length of 87Rb. The good agreement of

these two points with the 39K data serves to validate our experimental approach.

The extrapolated y-intercept of the red line in Fig. 4.10 gives the prediction that

in the X ∝ T 2a2/5 → 0 limit, S = −20± 100, consistent with zero. The bounds on the

value are given by the confidence margin of the linear fit. This limit can be reached in
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two very different ways. In the rather mundane T → 0 limit, NT trivially vanishes for

any value of N0, automatically giving S = 0. However, the dependence of S only on X

means that in the more pertinent a→ 0 limit (at finite T ) we expect the slope to tend

to zero, with a finite thermal fraction.

4.6 Conclusions

Combining the result of the heuristic approach for larger condensates with the success

of Hartree-Fock theory for small condensates confirms the picture of a non-interacting

saturated gas for a broad range of experimentally relevant parameters. We expect

this behaviour to be universal for (relatively) weakly-interacting Bose gases in three-

dimensional harmonic potentials, characterised by the short-range s-wave scattering

length a. This strongly suggests that condensation is indeed the result of a purely

quantum-statistical phase transition.

The Hartree-Fock prediction varies significantly with the form of the trapping po-

tential. We can repeat the derivation of §4.4 for power law traps (in a three-dimensional

system) of the form V (r) ∝ |rn| for general n with interesting results. Once we make

the approximation that the thermal atoms reside only outside the condensate, the re-

maining process is exact for a linear trap (n = 1), and we find

NT

N0
c

≈ 1 +
ζ(7/2)

ζ(9/2)
α0 +

ζ(5/2)

2ζ(9/2)
α2

0 , where α0 ∝ N1/4
0 (4.34)

and N0
c is defined for a linear trap. This demonstrates a stronger dependence on N0

than the findings for a harmonic trap. For a cubic trap (n = 3) the assumption that

the thermal atoms reside mainly outside the condensate is no longer a good one1, and

the central region must be included explicitly. This gives the prediction

NT

N0
c

≈ 1 +
ζ(3/2)

ζ(5/2)
α0 −

4
√
π

3ζ(5/2)
α

3/2
0 , where α0 ∝ N1/2

0 , (4.35)

where the dependence is now weaker on N0 . The α
3/2
0 term is included due to its

relatively large effect. From purely geometric considerations we would also expect

stronger non-saturation effects for lower dimensional systems. It would therefore be

interesting to study the low N0 limit for different trap dimensions and potentials, and

in particular disordered potentials [114] where the effective dimensionality can take on

non-integer values. It is, therefore, possible that non-saturation scaling could act as a

method for classifying the geometries and interactions in many-body systems.

The high N0 behaviour we see is not, however, due to altered mean-field effects

because of the slight anharmonicity of our system. Numerical simulations are observed

to be consistent with those for a harmonic trap. We hesitate to draw any further

1In fact using this assumption would lead to the conclusion that the gas is actually saturated.
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conclusions from the perceived enhanced non-saturation, aside from noting that beyond-

mean-field effects due to critical correlations might be expected to scale with the size

of the critical region. For a harmonically trapped gas in the Thomas-Fermi limit, this

region is the surface of an ellipsoid with semi-axes ∝ √α0 , such that the size of the

critical region ∝ α0 . The magnitude of these effects might therefore be expected to

also scale with this parameter.

The hope is that this work has dispelled any expectation that the atom number

should saturate during condensation at constant temperature, and has provided a solid

yard-stick for the scale of non-saturation in a harmonic trap. Indeed, in recent work the

lack of saturation of the thermal component has been acknowledged and attributed to

repulsive interactions [115]. Our results also highlight the need to be careful when using

ideal laws for calibration of experimental systems, for example using the condensed

fraction to measure the temperature of a trapped gas. Perhaps most significantly

though, we have leant the first direct experimental weight to Einstein’s textbook picture

of a saturated gas. The results of this chapter are summarised in [116].
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Chapter 5

Effect of interactions on the critical

temperature

“ I laughed heartily to myself, but I was the only one. At the point where

the aunts should have rolled out of their seats as one aunt there occurred

merely a rather ghastly silence as of mourners at a death-bed, which was

broken by Aunt Charlotte asking what I had said.”

– P. G. Wodehouse (The Mating Season)

5.1 History

Having investigated the effects of repulsive interactions in a Bose gas beyond the point

of condensation, we now turn to the behaviour of the critical point itself. The question

of how interactions affect this standard textbook result is, in contrast to the saturation

question, one that has been hotly debated for more than half a century, since the

pioneering work of Lee and Yang [117, 118]. This debate was reinvigorated with the

advent of the first experimental realisation of a BEC, creating a surge in theoretical

output on the topic since 1995. Though these gases are harmonically confined in the

lab, most theoretical work has historically focussed on uniform systems, where the

critical temperature for a non-interacting system T 0
c is given by (1.12). The simplicity

of the derivation given in §1.2.1 belies the complexity of the lowest-order correction

due to interactions. For several decades there was no general agreement on the form,

magnitude or even the sign of the shift, as illustrated by the summary of past work in

Table 5.1. The Tc shift is defined as ∆Tc = Tc − T 0
c .

The difficulty stems from the fact that a purely mean-field picture is not sufficient

when considering the critical point. Mean-field theories have numerous useful applica-

tions for the description of interacting Bose systems, such as the successful prediction of

the broadening of the condensate profile, the dispersion law for elementary excitations

and other implementations reviewed in [112], as well of course as the initial lack of

saturation of a harmonically trapped gas as discussed in Chapter 4. However, near the
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Year Prediction Ref.

1957 ∆Tc/T
0
c = C(an1/3)1/2 C = 2.49 Lee and Yang [117]

1958 ∆Tc/T
0
c = can1/3 Lee and Yang [118]

1960 ∆Tc/T
0
c = C(an1/3)1/2 C > 0 Glassgold et al. [119]

1964 ∆Tc/T
0
c = D(an1/3)3/2 D > 0 Huang [120]

1971 ∆Tc < 0 Fetter and Walecka [121]

1982 ∆Tc/T
0
c = C(an1/3)1/2 C = −3.5 Toyoda [122]

1992 ∆Tc/T
0
c = can1/3 c = 4.66 Stoof [123]

1996 ∆Tc > 0 Bijlsma and Stoof [124]

1997 ∆Tc/T
0
c = can1/3 c = 0.34± 0.06 Grüter et al. [125]

1999 ∆Tc/T
0
c = can1/3 c = 0.7 Holzmann et al. [126]

1999 ∆Tc/T
0
c = C(an1/3)1/2 C = 3.5 Huang [127]

1999 ∆Tc/T
0
c = can1/3 c = 2.3± 0.25 Holzmann and Krauth [128]

1999 ∆Tc/T
0
c = can1/3 c = 2.9 Baym [129]

2000 ∆Tc/T
0
c = can1/3 c = 2.33 Baym et al. [130]

2000 ∆Tc/T
0
c = can1/3 c = 5.1± 0.9 Reppy et al. [131]

2000 ∆Tc/T
0
c = can1/3 c = −0.93 Wilkens et al. [132]

2000 ∆Tc/T
0
c = can1/3 c = 1.71 Arnold and Tomášik [133]

2001 ∆Tc/T
0
c = can1/3 c = 1.32± 0.02 Arnold and Moore [134]

2001 ∆Tc/T
0
c = can1/3 c = 1.29± 0.05 Kashurnikov et al. [135]

2003 ∆Tc/T
0
c = can1/3 c = 1.14± 0.11 Kleinert [136]

2003 ∆Tc/T
0
c = can1/3 c = 1.3± 0.4 Davis and Morgan [137]

2004 ∆Tc/T
0
c = can1/3 c = 1.27± 0.11 Kastening [138]

2004 ∆Tc/T
0
c = can1/3 c = 1.23± 0.12 Ledowski et al. [139]

2004 ∆Tc/T
0
c = can1/3 c = 1.32± 0.14 Nho and Landau [140]

2010 ∆Tc/T
0
c = can1/3 c = −2.33 Betz and Ueltschi [141]

Table 5.1: Various predictions for the Tc shift since midway through the twentieth century.
Results are given in terms of the diluteness parameter an1/3 as used in the majority of the
references. All results are theoretical, apart from the experimental work of Reppy et al. It
was later shown that the estimation of the scattering length was incorrect in this work [135].
For the most part this data was collated by Seiringer and Ueltschi [142] and in the review by
Andersen [143].
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5.1 History

critical point (in what is known as the ‘critical region’) long-range correlations develop

which must be taken into consideration. Correlations play an essential role in phenom-

ena such as superfluidity [144] and associated vortex properties, as well as explaining

shifts in the frequencies of collective oscillations [145] and quantum depletion of the

condensate [146], and are as such a topic of great theoretical interest.

5.1.1 Uniform system

In a uniform system there is no shift within mean-field theory, and the lowest-order

shift in Tc is solely due to correlations. The lack of a mean-field correction in a uniform

system can be understood by observing that, in this description, interactions lead to

a universal shift by ε0 = 2gn of the effective potential Veff . Note that ε0 is now also

the lowest energy state of the system. In this chapter we shall always consider the case

where there is no condensate, such that n ≡ nT . By setting ε(r,p) = p2/2m + ε0 in

(1.6) we obtain a modified version of (1.7),

n =
1

λ3
T

g3/2

[
e(µ−ε0)/kBT

]
. (5.1)

At µ = 0 there is clearly a shift in n from the ideal critical value , but the upper bound

on the chemical potential, according to (1.1), is the lowest single-particle energy state

ε0 . Macroscopic occupation of the ground state now occurs when µ approaches this

value. The fact that interactions shift both the critical chemical potential µc and the

effective potential by the same amount results in the ideal nc (and equivalently Tc)

being recovered.

Calculation of the shift induced by correlations requires non-perturbative methods

which are difficult to compute [143, 147], hence the long and varied theoretical back-

ground. Effects are considered in terms of the small diluteness parameter, defined as

the ratio between the scattering length and the typical inter-particle separation

an1/3 ≡ ζ(3/2)1/3 a

λ0
, (5.2)

where in the equivalent form λ0 is the thermal wavelength at T 0
c ,

λ0 =

(
2π~2

mkBT 0
c

)1/2

. (5.3)

A general consensus for ∆Tc has only been reached in the last ten years [143, 147–

149], thanks to the Monte Carlo simulations carried out by Arnold and Moore [134]

and Kashurnikov et al. [135] in 2001. It turns out that long range correlations act to

aid the establishment of coherence between particles, so that condensation sets in at a

higher temperature. The result is

∆Tc

T 0
c

≈ 1.3 an1/3 ≈ 1.8
a

λ0
, (5.4)
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where the functional dependence is that proposed by Lee and Yang in 1958 [118].

Though the matter is generally considered settled, it is still not universally accepted,

as may be seen from the latest entry in Table 5.1. It may require direct experimental

evidence to finally put the affair to bed.

5.1.2 Harmonic confinement

In the harmonically trapped case, interactions affect µc and Veff differently due to the

inhomogeneity of the system, and the critical temperature is shifted within mean-field

theory. Note though that µc = Veff(0), and the critical phase-space density of ζ(3/2) is

preserved at the centre of the trap. The mean-field shift for a harmonic potential was

first calculated by Giorgini et al. [150] and is discussed in §5.2. The first-order result

is given by
∆Tc

T 0
c

≈ −3.426
a

λ0
, (5.5)

predicting a negative shift in this case. For a harmonically trapped gas, the mean-field

result dominates over the effect due to correlations in a manner that goes beyond the

difference in pre-factors between (5.4) and (5.5). This is because for a confined gas at

the condensation point, the critical region at the centre of the trap is vanishingly small,

so correlation effects are expected to effect Tc at higher order in a/λ0 . The mean-field

result of (5.5) is therefore expected to be exact to first order.

It is pointed out in [150] that critical correlations are expected to affect the result at

the order of a2 and above. This is as a result of the Ginzburg-like criterion [103, 151],

predicting that correlations become significant when the correlation length of the Bose

gas becomes comparable to the length-scale of nonperturbative physics in the system.

This condition is calculated in §II.C of [134] to be

δµ = |µ− µc| .
~2a2

mλ4
0

, (5.6)

where µc is the value of µ at the critical point. This condition is equivalent to the

one that appears in the original mean-field Tc shift paper [150]. The conclusion that

critical correlations come in only at second order and above is most simply attained

by dimensional analysis, as is carried out in [134], along with other more thorough

derivations. The investigation further shows that a logarithmic term is also expected

to appear, resulting in a shift of the form

∆Tc

T 0
c

= c1
a

λ0
+

(
c′2 ln

a

λ0
+ c′′2

)(
a

λ0

)2

+ . . . (5.7)

where c1 ≈ −3.426 is the mean-field result. Attempts have been made to theoretically

quantify the beyond-MF corrections to the MF result [134, 149, 152–154], but no con-

sensus has been reached beyond the expectation that the additional beyond-MF shift

should be positive.
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Figure 5.1: Summary of the past experimental determinations of the Tc shift by Ensher et al.
[108], Gerbier et al. [77] and Meppelink et al. [155]. The dashed lines, representing the data of
Gerbier et al., show the single standard deviation bounds as found in Fig. 3 of [154]. The data
covers the range a/λ0 = 0.007-0.024 and is consistent with the MF prediction (blue line).

5.1.3 Past experiments

Since the MF prediction of [150] in 1996, experiments in harmonic traps have ruled out

the ideal prediction T 0
c with ever increasing certainty, as summarised in Fig. 5.1. The

first measurement performed by Ensher et al. [108] found ∆Tc/T
0
c = −0.06± 0.05 for

fixed a/λ0 ≈ 0.015 , just excluding the ideal case. Gerbier et al. [77] managed to probe

a range of a/λ0 from 0.016 to 0.024 by varying the density of the cloud, excluding

T 0
c by more than two standard deviations. Most recently in 2010 Meppelink et al.

[155] measured the Tc shift with deft precision at a/λ0 ≈ 0.007 , finding ∆Tc/T
0
c =

−0.026± 0.001. All of these investigations found results consistent with the mean-field

theory, but none could discern any corrections beyond this description.

5.1.4 Aims of the investigation

Though in the experiments carried out by Gerbier et al. they were able to tune the

interaction parameter a/λ0 by varying the sample density (and hence critical tempera-

ture), it is difficult to span a wide range with this method due to the weak dependence

a/λ0 ∝ n1/3 . These experiments were carried out with 87Rb (and in a magnetic trap),

entailing a fixed scattering length. Their concluding remarks from this work point the

way to future progress: “We note to conclude that measuring corrections to Tc beyond

the mean field for our typical experimental parameters would require thermometry with

an accuracy of 1 % or better. A more direct route to investigate such effects might be

to measure the critical density near the center of the trap, directly sensitive to the pres-

ence of critical fluctuations. Alternatively, these many-body effects could be enhanced

in the vicinity of a Feshbach resonance.”

Using the above as a manifesto, we use an improved thermometry technique to
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5.2 Mean-field shift in a harmonic trap

increase measurement accuracy, while using the available Feshbach resonance in 39K

to investigate from the very-weakly interacting limit up to a regime where we hope

to see beyond-MF effects. With the versatility of the Feshbach resonance we can also

probe more extreme regimes, where thermodynamic equilibrium is lost. Direct probing

of the in situ density is beyond our current means, but remains an exciting area of

investigation. This technique has recently been used to show strong deviations from

MF theory in excellent agreement with quantum Monte Carlo simulations of the effects

of correlations [156]. We proceed with a discussion of the mean-field effects that usually

dominate the Tc shift in typical BEC setups, before moving on to the experimental

methods geared towards revealing the beyond-MF behaviour.

5.2 Mean-field shift in a harmonic trap

The negative mean-field shift of equation (5.5) can be qualitatively understood by

considering the effect of repulsive interactions near the trap centre. As the mean-field

potential is proportional to the density of the cloud the effect is strongest here. The

net effect then is that interactions spread the atoms out, reducing the central density

in comparison to an ideal Bose gas. In the non-interacting case the critical point is

reached when N0
c atoms are in the trap and, as found in §1.2.2, a critical density equal

to that of a uniform system is reached at the trap centre. For the interacting Bose gas

this critical density is no longer reached with N0
c atoms due to the flattening of the

distribution at the trap centre, and further atoms must be added before the critical

phase-space density is attained. There is therefore a positive shift in the critical number

at constant temperature (∆Nc > 0), or correspondingly a negative shift in the critical

temperature for constant atom number (∆Tc < 0). The first-order shift is derived

analytically below, before a self-consistent numerical method is presented to help both

illustrate the effect and for use later in the chapter.

5.2.1 Analytic solution

To calculate the first order effect of interactions on the critical temperature in a har-

monic trap we look again at the Hartree-Fock description in the semi-classical limit. In

this case the single-particle energy levels are given by

ε(r,p) =
p2

2m
+ V (r) + εint , (5.8)

where εint = 2gn(r) , and V (r) takes the parabolic form given by (1.14). We want to

find the shift in critical temperature for a particular value of N , so we consider the

144
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differential dN , given by

dN =
∂N

∂T
dT +

∂N

∂µ
dµ+

∫
∂n(r)

∂εint
dεint (5.9)

=
∂N

∂T
dT +

∂N

∂µ
dµ+

∫
∂n(r)

∂εint
2gn(r)dr . (5.10)

The last term must be kept in this form because of the spatial dependence of εint . We

are interested in the small variations from the ideal case where T = T 0
c , µ = 0 and

εint = 0 , so the partial derivatives are evaluated at this point. Considering the first

order shift from the ideal case in terms of the small quantities ∆Tc=Tc − T 0
c , ε0 and

2gn(r) allows us to write

0 =
∂N

∂T
∆Tc +

∂N

∂µ
ε0 + 2g

∫
∂n(r)

∂εint
n(r)dr . (5.11)

The quantity ε0 is the true zero-point energy of the system, which is shifted by an

amount ≈ 2gn(0) by interactions1. Up until now we have also neglected the zero-point

motion of atoms in the harmonic oscillator ground state. Its inclusion results in a shift

of the critical temperature even for a non-interacting gas, though it is independent

of N (as we shall see) and so in the limit N → ∞ the relative shift tends to zero.

Condensation actually sets in when the chemical potential µ is equal to

ε0 =
3

2
~ωm + 2gn(0) , (5.12)

where the first term is the zero-point energy of the harmonic oscillator, and ωm =

(ωx + ωy + ωz)/3 is the algebraic mean of the trap frequencies.

The first term on the right-hand side of (5.11) can be found from the ideal equation

for N at T 0
c given by (1.18). We immediately find

∂N

∂T
= 3

N

T 0
c

. (5.13)

To calculate the second term we need to use the familiar thermal distribution function

n(r) =
1

λ3
T

g3/2

[
e−(V (r)+εint−µ)/kBT

]
. (5.14)

It is helpful to use the sum form of the g3/2 function, so that by taking the partial

derivative with respect to µ and integrating over space we obtain

∂N

∂µ
=

1

λ3
T

∞∑
k=1

1

k3/2

∫
∂

∂µ

[
e−k(V (r)+εint−µ)/kBT

]
dr . (5.15)

1This approximation is good as long as aho � RT , i.e. the extent of the lowest single particle
wavefunction is much smaller than the size of the thermal cloud.
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5.2 Mean-field shift in a harmonic trap

At the ideal critical point this can be written as

∂N

∂µ
=

1

kBT 0
c

1

λ3
0

∞∑
k=1

1

k1/2

∫
e−kV (r)/kBT

0
c dr , (5.16)

where

λ0 =

(
2π~2

mkBT 0
c

)1/2

(5.17)

is the thermal wavelength at T 0
c . Evaluating the above expression and substituting in

N from (1.18) gives the result

∂N

∂µ
=
ζ(2)

ζ(3)

N

kBT 0
c

, (5.18)

giving the first-order saturation result of (4.31). The final term of (5.11) can be found

by following a similar process. Using the above expression for n(r) and using the sum

form of the g3/2 function allows us to write∫
∂n(r)

∂εint
n(r)dr =

1

λ6
T

∞∑
j=1

∞∑
k=1

1

j3/2

1

k3/2

∫
∂

∂εint

[
e−j(V (r)+εint−µ)/kBT

]
e−k(V (r)+εint−µ)/kBTdr ,

(5.19)

which, at the critical point, can be evaluated as∫
∂n(r)

∂εint
n(r)dr = − 1

kBT 0
c

1

λ6
0

∞∑
j=1

∞∑
k=1

1

j1/2

1

k3/2

∫
e−(j+k)V (r)/kBT

0
c dr (5.20)

= − S
ζ(3)

N

λ3
0kBT

, (5.21)

where

S =

∞∑
j=1

∞∑
k=1

1

j3/2k1/2(j + k)3/2
≈ 1.208 . (5.22)

Inserting the expressions (5.13), (5.18) and (5.21) into (5.11) and collating similar terms

gives the first order result

∆Tc

T 0
c

= − ζ(2)

3ζ(3)

(
~ωm

kBT 0
c

)
− 4

3ζ(3)
[ζ(2)ζ(3/2)− S]

a

λ0
(5.23)

≈ −0.684

(
~ωm

kBT 0
c

)
− 3.426

a

λ0
. (5.24)

The first term on the right-hand side results solely from the zero-point motion of the

harmonic oscillator, and is known as the finite-size shift. From this it is clear that the

absolute shift is indeed independent of the atom number. With the number of atoms in

our system the relative shift of Tc is typically ∼ 1 % . The second term is the shift due
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5.2 Mean-field shift in a harmonic trap

to interactions of (5.5), characterised by the interaction parameter a/λ0 . In typical

cold atoms systems this takes a value on the order of 0.01 , shifting Tc by about 3 % .

Equation (5.24) is often written in the equivalent form

∆Tc

T 0
c

≈ −0.728
ωm

ω̄
N−1/3 − 1.326

a

āho
N1/6 , (5.25)

where the conversion factor N1/6/aho =
√

2πζ(3)1/6/λ0 has been employed for the

interaction term. We choose to work in terms of the original form of (5.24). We are

only interested in the shift due to interactions, so must cater for the finite-size shift in

some manner.

It is worth noting that the value 2gn(0) used for the zero-point interaction energy

is the mean-field value. The effect of correlations is to suppress density fluctuations

near the critical point, decreasing εint(0). Allowing this to propagate through the above

calculation results in the expected positive shift with respect to the mean-field result

(5.24).

5.2.2 Numerical solution

To visualise the effect on the atomic density distribution we return to the semi-classical

Hartree-Fock approximation and equation (1.6). The interaction term 2gn(r) must be

added to the expression for the single-particle energy spectrum,

ε(r,p) =
p2

2m
+ V (r) + 2gn(r) , (5.26)

where for simplicity we consider a spherical harmonic potential such that

V (r) =
1

2
mω2r2 . (5.27)

By conversion to the dimensionless variables

A =
4a

λT
, D = nλ3

T , R =
r

RT
and α =

µ

kBT
(5.28)

and integrating (1.6) over momentum space we obtain the implicit equation

D(R) = g3/2

(
eα−R

2/2−AD(R)
)
. (5.29)

In mean-field theory we know that at the critical point D(0) = g3/2(1) = ζ(3/2). This

allows us to write down the value of α at the critical point,

αc = Aζ(3/2) . (5.30)
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Figure 5.2: Mean-field theory predicted critical density distribution for a harmonically trapped
Bose gas with repulsive interactions. The black line shows the non-interacting case (identical to
Fig. 1.2). The blue lines show the distribution for increasing interaction strength, in successive
steps of 0.01 a/λT up to 0.05 a/λT . Here it is clear that Nc increases with increasing a/λ0 .
Note in each case the central phase-space density is ζ(3/2) .

Combining this with (5.29) we obtain an expression for the phase-space density distri-

bution at the critical point

Dc(R) = g3/2

(
eAζ(3/2)−R2/2−ADc(R)

)
. (5.31)

Equation (5.31) must be solved self-consistently for a given value of A . This may be

done numerically, and the results are shown for various values of a/λ0 = A/4 in Fig.

5.2. This clearly shows how the central density distribution is increasingly spread out

for higher a/λ0 . The mean-field Nc shift can be determined by integrating (5.31) over

R-space. In Fig. 5.3 this result is compared with the first-order result found from (5.5):

∆Nc

N0
c

≈ −3
∆Tc

T 0
c

≈ 10.278
a

λ0
. (5.32)

5.2.3 Introducing critical effects

When critical correlations are also taken into account there are now two competing

effects; mean-field repulsions act to hinder condensation, while correlations act to aid

it. Qualitatively the result can be visualised as in Fig. 5.4. Thinking for now in terms

of the atom number at a fixed temperature, the MF effect reduces the central density,

such that more atoms are required to reach a particular peak density than for an ideal

gas. However, correlations act to reduce the critical density, so fewer atoms are needed

to reach the onset of condensation. We do not simply expect the critical density to

be described by the uniform result (5.4), as long-range correlations are not a local

phenomenon. We therefore proceed to determine the effect experimentally, as related
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Figure 5.3: Comparison between the first order analytic result ∆Nc/N
0
c = 10.278a/λ0 (blue

line) and the numerical method (blue points) used to find the mean-field Nc shift described in
the text.
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Figure 5.4: Illustration of the competing effects induced by repulsive interactions on the criti-
cal point of a harmonically trapped Bose gas. Compared with an ideal gas (black line) with the
same Tc, repulsive interactions reduce the critical density, but also broaden the density distri-
bution (red line). Mean-field theory (blue line) captures only the latter effect, thus predicting
an increase in the critical atom number Nc at fixed T , corresponding to a reduction in Tc at
fixed N .

below.

5.3 Experimental procedure

To measure the critical point we create clouds with various condensed fractions in

order to extract the value of NT as N0 tends towards zero. This involves a basic

method closely following the one used in Chapter 4, with each data series made up of

∼ 100 images (see Fig. 5.5). Condensates are prepared once more using a = 135 a0

before the trap depth and Feshbach field are ramped to their final values, the fixed

trap depth ensuring good temperature stability over each experimental series. In this
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5.3 Experimental procedure

Figure 5.5: Sample measurement series taken for a scattering length of 274 a0. The cloud
is held in the trap for between 4 and 22 s at the measurement scattering length. Hold time
increases from left to right and from top to bottom. The data is shown with our standard
OD colour map. The red box indicates the image shown in Fig. 5.6, where the range of the
colour map has had to be reduced to be able to distinguish the tiny condensed fraction from
the thermal cloud. All clouds have a condensed fraction of under 2 %.
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a

b

Figure 5.6: a A sample optical density image
of a cloud with 450,000 atoms and a condensed
fraction of 0.14 % , taken after 19 ms TOF with
interactions turned off. The range of the colour
map has been restricted to allow the condensate
to be discerned. b Azimuthally averaged col-
umn density of the same data, displayed for il-
lustrative purposes. The full 2D optical-density
profile is used for fitting.

set of experiments we use trapping frequencies in the range ω̄ = 2π × 75-85 Hz. The

clouds are held while the atom number decays and elastic collisions redistribute atoms

between the two components. This is interrupted at a-dependent intervals (loss rates

being much greater for high a) by switching off the trap for imaging after 19 ms time-

of-flight. In contrast to the saturation measurements we are interested only in the

very-low N0 regime, studying condensed fractions no higher than ∼ 2 % .

Other groups, as discussed in §5.1.3, have measured the Tc shift for values of a/λ0

between 0.007 and 0.024. The ability to tune the scattering length with a Feshbach

resonance allows us to expand this range to explore the region 0.001 < a/λ0 < 0.06 .

In addition to this, the resonance provides two major experimental advantages that

are essential for the precision and accuracy of our measurements. Firstly, for each

measurement series, taken at a particular a and λ0 , we concurrently take a series of

reference data with a different scattering length aref , using the same ω̄ and very similar

N and hence λ0 . We use aref/λ0 ≈ 0.005 , which is small enough that beyond-MF effects

are expected to be negligible, but also large enough that the system remains close to

thermal equilibrium. This allows us to directly measure the small Tc shift due to

the difference in a/λ0 between the two series, essentially eliminating all a-independent

systematic errors that would otherwise affect the absolute measurement of Tc(N, ω̄, a) .

These include the finite-size shift of equation (5.24), absolute number calibration and

the correction due to the trap anharmonicity (see §3.4.4). This method is described in

more detail later.

The second experimental advantage is the ability to turn interactions off during

time-of-flight. This minimises the expansion of the condensate, allowing it to stand out

against the thermal background. A sample image is shown in Fig. 5.6. We achieve this

by ramping the Feshbach field to 350 G (the zero crossing value) in under 2 ms once

the atoms have been released from the optical potential. Along with our image fitting

technique, this allows the reliable detection of condensed fractions as small as ∼ 10−3.

This allows us to home in on the critical point with high precision.
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5.3.1 Image fitting routine

The details of the Feshbach-field ramp during TOF are discussed in the context of

temperature errors in §5.5.2. The narrow condensates this method produces show

up much more clearly than without the ramp, but the images must still be carefully

processed to accurately detect the condensate numbers. This is important to allow

accurate extrapolation to the critical point. The smallest condensates can easily be

missed with standard fitting techniques, so a method tailored to the purpose is used.

This must be combined with the careful measurements of the cloud temperature and

thermal atom number used in our saturation measurements. The result (summarised

in Fig. 5.7) is a seven-step process:

1. Data are excluded within a 60µm radius of the cloud centre (an estimate is

entered manually) to be sure to remove the BEC from the fit. A simple g2 fit is

then applied to the thermal cloud.

2. The g2 profile from the first step is fixed, and a Thomas-Fermi profile matched

to the condensate.

3. The condensate width found from the previous step is used to provide a tighter

exclusion region to mask the condensate. The exclusion radius is set to 1.1Rk

(where Rk is the previously fitted Thomas-Fermi radius), with the cloud centre

now defined by the value found in step 1. A new g2 fit is used to extract the

thermal atom number NT .

4. Step 2 is repeated using the new g2 profile.

5. The central region out to one thermal radius RT is now excluded and the thermal

atoms fitted with a g2 to find T . This is the most reliable method to find the

temperature as previously discussed.

6. Now just the region between a radius of 35µm and one RT is used for a g2 fit.

This provides the best fit to the thermal atoms near the cloud centre.

7. N0 is found by summing the difference between the data and the thermal profile

of step 6 within 0.5RT of the centre.

The value of N0 found in the last step is consistent with the value obtained from step 4

for N0 & 2,000 , but for smaller condensates the direct summation is more reliable. The

shape of the condensate is not preserved when a = 0 during TOF, so a Thomas-Fermi

fit is no longer applicable in any case.
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a b

c NT d

e T

f g N0

Figure 5.7: Illustration of our fitting routine. All fitting is carried out with full 2D columnn
densities. Red curves indicate fits to the data, blue curves are fixed profiles. Greyed regions are
excluded from the fitting step. a A g2 fit to the thermal atoms is carried out, excluding data
inside a 60µm radius (with a manually provided centre) to be sure to exclude the BEC. b A
Thomas-Fermi profile is used to fit the BEC (with fixed thermal profile). c The Thomas-Fermi
radius Rk provided by the previous step allows us to more stringently exclude data within 1.1Rk

of the centre, with a new g2 fit giving NT . d As in b, but with the new fixed g2 profile. e
A g2 fit to the wings of the cloud (outside one thermal radius RT ) gives us T . f We focus on
the critical region, fitting a g2 profile to the thermal atoms around the BEC. g N0 is found by
summing the difference between the data and the thermal profile around the critical region.
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5.4 Critical temperature shift results

5.3.2 Differential measurement process

The first stage of data processing is to compensate for any residual temperature drifts

through each series, using the Hartree-Fock scaling of Chapter 4. This time the process

of assigning a temperature to each image is simplified, as images were taken sequen-

tially with decreasing atom number. Temperature is assigned by a fit to the variation

in measured image temperature with N0. This method is used because we are only

interested in the critical point, which can be done by finding both T and NT in the

N0 → 0 limit.

The next stage draws upon the NT scaling with N0 found in the Hartree-Fock

regime from the saturation investigation. In order to accurately determine Nc we plot

NT versus N
2/5
0 and fit the data with

NT = Nc + SHFN
2/5
0 , (5.33)

using the definition of SHF(T, ω̄, a) given by (4.32). This method is illustrated in Fig.

5.8. Here the importance of the Hartree-Fock scaling and data at low N0 is clear; linear

extrapolation in Fig. 5.8 a would produce vastly different results.

To correct for the small (few per cent) difference in Nc between the measurement

and reference series, we apply the ideal gas scaling Tc ∝ Nc to the reference series. The

second order correction in ∆Tc due to the small (< 2 %) Tc shift at a/λ0 ≈ 0.005 is

much smaller than our statistical error bars. The result is a measurement for Tc at

two values of a/λ0 and equal N . The measurement at aref/λ0 is expected to be well

described by mean-field theory. This provides an accurate measure of ∆Tc/T
0
c , even if

the absolute system parameters are not as accurately known.

5.4 Critical temperature shift results

The 21 series for which thermal equilibrium was deemed to hold are shown in Fig. 5.9,

where data were taken for N ≈ (2-8)×105 (corresponding to T 0
c ≈ 180-330 nK) in order

to verify that the results depend only on a/λ0 . The results show very good agreement

with the mean-field result of equation (5.5) for a/λ0 . 0.01. For large a/λ0 we see

a clear positive deviation from this prediction. All data points are fitted well with a

second order polynomial,
∆Tc

T 0
c

= c1
a

λ0
+ c2

(
a

λ0

)2

, (5.34)

with c1 = −3.5 ± 0.3 (consistent with MF theory) and c2 = 46 ± 5. Note that the

polynomial fit was used to calibrate the y-axis of Fig. 5.9 by setting ∆Tc/T
0
c = 0 where

the fit cuts the axis. However, our results are unchanged within errors if we assume

the MF prediction for our reference data at a/λ0 ≈ 0.005 is exact. By fixing the slope

c1 to the mean-field result we can improve the estimate for the quadratic result to
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Figure 5.8: a N0 versus NT for two concurrently taken series. The blue points were taken at
aref = 56 a0 , the red points at a = 274 a0 (where λ0 ≈ 104 a0 for both series). The data has
been scaled to the same temperature (T = 240 nK) for illustrative purposes, directly showing
the shift of the critical number ∆Nc(T ). All points shown correspond to a condensed fraction
of under 2 % . The solid lines show the extrapolation to N0 = 0 used to extract Nc . b The same

data is shown plotted in the form NT versus N
2/5
0 , showing the extrapolation more clearly. In

both plots the filled red square is the data point calculated from the image shown in Fig. 5.6.

0.00 0.01 0.02 0.03 0.04
-8

-6

-4

-2

0

Δ
T c

/T
0 c
 (%

)

a/λ0

MF theory

Figure 5.9: Shift of Tc with repulsive interactions. Data points were taken with N ≈ 2× 105

(blue circles), 4 × 105 (black squares) and 8 × 105 (red triangles) atoms. The dashed line is
the mean-field result ∆Tc/T

0
c = −3.426a/λ0 . The solid line shows the result of a second-

order polynomial fit to the data, discussed in the text. Vertical error bars are statistical, while
horizontal error bars reflect the uncertainty in the position of the Feshbach resonance.

c2 = 42± 2.

The value of c2 strongly excludes zero, and is positive as expected for beyond-

MF correlations. As previously mentioned, this correction is not expected to be purely

quadratic, with the pre-factor expected to take the form c2 = [c′2 ln(a/λ0)+c′′2] according

to (5.7). However, our experimental precision is not high enough to discern the exact

form of the correction. Fitting with the logarithmic term included would only produce

a better fit to the data due to the increased number of fitting parameters.

These results rely heavily on our differential measurement approach to remove many

sources of error. However, any errors that scale with a (or a/λ0) will systematically
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Figure 5.10: Modification of the effective trapping potential caused by repulsive interactions.
The black dashed line shows the harmonic trapping potential, while the red line shows the
effective potential produced for Nc atoms at a/λ0 = 0.05. The solid lines show the phase-space
density distribution of the ideal (black) and interacting (red) clouds.

distort our findings. The following section describes the sources of such errors and how

they have been quantified. The results have been incorporated in the error bars of Fig.

5.9.

5.5 Assessment of errors

As we are looking for variations on the per cent scale, it is crucial to ensure system-

atic errors are handled correctly. The results depend heavily on the precise relative

measurement of temperature, as most other sources of error are eliminated by us-

ing the differential measurement method, while the dependence of our result on the

recorded atom number is less strong and less susceptible to systematic variation. Two

a-dependent sources of temperature error have been identified, and require careful at-

tention. These are discussed below. Two other effects (due to the finite imaging time

and residual Feshbach field curvature) that provide only absolute errors are still of

general interest, and are assessed in Appendix D.

5.5.1 In-trap momentum distribution

The mean-field modification of the ideal in-trap density distribution caused by inter-

actions has been discussed already, and this has a knock-on effect for the momentum

distribution. The effective trapping potential for the atoms is a flattened version of the

harmonic potential due to the addition of the interaction potential. This is illustrated

in Fig. 5.10. The flatter trap means more low momentum states are occupied, so fitting

the resultant time-of-flight spatial distribution with the ideal g2 function will naturally

produce errors. Significantly, the error here is dependent on a/λ0, so the magnitude of

the effect will differ between our reference data and our measurement data.
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The modified momentum distribution can be found by using the self-consistent

Dc(R) of equation (5.31) and plugging this back into (1.6), integrating only over space

to give n(p) . Using dimensionless coordinates once more this may be written

n(P ) ∝
∫ ∞

0

R2 dR

exp
[
P 2

2 + R2

2 +ADc(R)−Aζ(3/2)
]
− 1

, (5.35)

where the T -dependent prefactors have been dropped for clarity as we are only inter-

ested in the shape of the distribution. Here we have introduced another dimensionless

variable P , given by

P =
p

PT
, (5.36)

where PT =
√
mkBT . To see what effect the modified distribution has on our image

fitting we need to integrate along one axis (cf. the imaging axis) to give

n2D(P ) ∝
∫ ∞

0

∫ ∞
0

R2 dR dPy

exp
[
P 2

2 +
P 2
y

2 + R2

2 +ADc(R)−Aζ(3/2)
]
− 1

, (5.37)

such that P is now in the x-z plane. Taking A→ 0 it is possible to recover the ideal g2

distribution. n2D is fitted with a g2 function, and the extracted radius in terms of PT

gives an estimate of the expected temperature measurement error. PT is used to avoid

confusion between the thermal radius in-trap and in time-of-flight. For large TOF the

thermal radius RT (t)→ PT × (t/m). As shown in Fig. 5.11, it is clearly important to

exclude data around the cloud centre from the fit, as it is here where the distribution

is most altered. The temperature error expected for the experimental range of a/λ0 is

shown in Fig. 5.12, where the fits to the high-energy wings of the distributions exclude

data within PT of the centre. If the fits are carried out on the entire distribution the

errors are about three times as large. We can see that the error is roughly linear in

a/λ0, and at a/λ0 = 0.04 is ≈ −2.5%. This is too large to ignore, and must be factored

in to our error calculations for the data series.

5.5.2 Interaction energy

When the trapping potential is suddenly turned off to allow the expansion of the cloud,

the stored interaction energy can be converted into kinetic energy. The cloud effectively

forces itself apart such that on average the atoms travel further than their initial kinetic

energies would have taken them, giving an apparent temperature higher than the true

value. This produces another a-dependent error, which will not cancel out in our

differential measurement.

To get an idea of the magnitude of the effect, the interaction energy per particle

at the critical point εint can be calculated from the average self-consistent mean-field
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Figure 5.11: Two-dimensional momentum distribution for an ideal gas and an interacting gas
in a harmonic trap. The black line shows the ideal g2 function, while the red line shows the
enhancement of low-momentum states caused by interactions (a/λ0 = 0.05). The distributions
are normalised to the same atom number. This illustrates the need to exclude data from the
central region when fitting the images. The dashed line shows the experimental exclusion region
for temperature fitting, equivalent to a single thermal radius in time-of-flight.
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Figure 5.12: ∆T error associated with the modified momentum distribution. The error is
roughly linear in a/λ0. The shift is negative and ∼ 1-2 % for most of our experimental data.
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Figure 5.13: Variation of εint per kBT with interaction strength. The black points show the
results of equation 5.40, where the modification of the density distribution is taken into account.
The red dashed line shows the result assuming a fixed ideal gas distribution.

value of 2gnc(r) . This is given by

εint =
Eint

N
= 2g

∫ ∞
0

4πr2nc(r)
2 dr

/∫ ∞
0

4πr2nc(r) dr (5.38)

=
2g

λ3
0

∫ ∞
0

R2Dc(R)2 dR

/∫ ∞
0

R2Dc(R) dR (5.39)

= AkBT

∫ ∞
0

R2Dc(R)2 dR

/∫ ∞
0

R2Dc(R) dR . (5.40)

As the integrals of equation (5.40) depend only on A, the quantity εint/kBT also depends

only on A, so we expect the error to scale with a/λ0 once more. The dependence is

superlinear as the average density increases with a/λ0 due to the central spreading of the

distribution. The dependence is shown in Fig. 5.13, along with the linear scaling that

would be obtained if the distribution remained ideal. At a/λ0 = 0.04 the interaction

energy per particle is over 10 % of kBT , a considerable fraction. The effect is limited

however by using the zero-crossing of the Feshbach resonance to turn off interactions

during time-of-flight. Unfortunately we cannot completely eliminate the effect because

of the finite ramping time of the Feshbach field. We also want to avoiding changing the

interaction strength before the trap is turned off which could invalidate our results.

To estimate the residual effect another mean-field model was used. Randomly

distributed starting positions and momenta for 100,000 atoms were generated according

to the Bose distribution (for our particular trapping potential). The final positions were

then numerically calculated given the time-varying interaction potential experienced

during time-of-flight. These positions were then projected along one-axis to produce a

fake image for fitting. This process was repeated to produce many such images. To keep

it reasonably simple the interaction potential during time-of-flight was modelled on the
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Figure 5.14: Example of our Feshbach field ramp during TOF, used to minimise interaction
broadening of the cloud. Black points show the field strength and red points the corresponding
39K scattering length. In this example the field is ramped down from close to resonance towards
the zero crossing value of 350 G immediately after the trap is turned off (dashed line). The
apparent quantisation in the scattering length is due to the resolution of the current meter used
to monitor the ramp, and the strong scaling of scattering length with field near the resonance.

density distribution of an ideal gas released from a harmonic trap, given in equation

(2.56). The interaction strength could also be varied in time to compare what happens

when interactions persist during the whole TOF, when they are suddenly switched off

at some point, or when they are gradually ramped off.

Under typical experimental conditions the model predicts (when fitted using an

exclusion radius of RT ) that if interactions are sharply switched off after 2 ms TOF

there is no discernible temperature shift for a = 56 a0 (i.e. our reference data), while

for a = 357 a0 there is a residual shift of ∼ 2 % . This latter value corresponds to

a/λT ≈ 0.034 for the temperature used in the model of 250 nK. This 2 % shift is a

rough upper limit, as can be seen by looking at the actual field variation during time-

of-flight given in Fig. 5.14.

It was also possible to investigate this effect experimentally by comparing the fitted

temperatures for interactions on during TOF with those attained when ramping off

interactions for various a. The results, shown in Fig. 5.15, confirm the general scaling

of the effect with a/λT , and also helped to validate the above model. Note that here

∆T = Ton − Toff , the difference between the observed temperature with interactions

left on during time-of-flight and when they are ramped off, so the residual systematic

error (which we are trying to quantify) is not included.

Fortuitously, this positive shift tends to counteract the negative shift caused by the

change to the momentum distribution discussed in the previous section, resulting in a

net error of at most ±1 % at a/λ0 = 0.04 . This is large enough to take account of in

our error assessments, but not so large as to greatly modify the results themselves.
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Figure 5.15: Experimental observation of the shift in measured temperature due to inter-
actions during time-of-flight. ∆T is the difference between the temperature measured when
interactions are left on until just before imaging and the temperature measured when interac-
tions are tuned to zero directly after the trap is turned off. For the right-most data point this
turn-off follows the ramp of Fig. 5.14. All of the data was taken at a temperature of ∼ 260 nK,
so multiplying the x-scale by 10−4 gives a rough conversion to a/λT . The error bars show the
standard error, while the red line is an unweighted linear fit to the data points.

5.6 Non-equilibrium effects

As previously stated, data was taken in the range 0.001 < a/λ0 < 0.06 , but only that

for which 0.005 < a/λ0 < 0.04 was shown for the Tc shift results. This is because

outside this region the atom-loss rate becomes comparable to the re-thermalisation

rate, and the condition α� 1 discussed in §2.7.2 is violated. As thermal equilibrium is

never fully established in a system with continuous dissipation (we can only be ‘close’

to equilibrium) we need a better way to quantify this condition, while also confirming

that global (rather than just local) equilibrium can be achieved.

The relevant quantities are the elastic collision rate Γel , the hold time1 in the trap

thold , the trapping frequency ω̄ and a characteristic atom-number decay time τ . The

definition of τ is guided by our measurement precision. We measure Nc within ∼ 1 %,

so we require that the gas continuously re-equilibrates on a time-scale τ corresponding

to 1 % atom loss. As long as this occurs the distribution of atoms between the thermal

and condensed components should reflect the conditions of equilibrium to within the

measurement precision.

This condition is therefore parameterised by the quantity Γelτ . Equilibrium is

usually deemed to require about 3 collisions per particle [67]. For all the data used for

1The hold time thold is taken to be the time from which the scattering length a reaches its measure-
ment value to the moment at which the atoms are released from the trap.
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the Tc shift investigation we made sure that Γelτ > 5 , where Γel is given by

Γel = n(0)vthσ0/2 , (5.41)

where

n(0) = N

(
mω̄2

2πkBT

)3/2

, vth =

√
8kBT

πm
and σ0 = 8πa2 , (5.42)

and τ was found from our experiments nearNc . The expression for the elastic scattering

rate is the classical result in a harmonic trap used in [157].

For global equilibrium to hold, the condition thold > τ > 1/ω̄ must be satisfied. This

ensures there is enough time for the measurement conditions to be reflected across the

full extent of the cloud. Global equilibrium will also only hold outside the hydrodynamic

regime (in which the cloud becomes collisionally opaque), governed by the condition

Γel/ω̄ < 1 .

The results of our Tc measurement for N ≈ 4 × 105 (λ0 ≈ 104a0) over the full

range of a/λ0 values studied is displayed in Fig. 5.16 a. All data shown still satisfy the

conditions thold > τ > 1/ω̄ and Γelthold > 5, sufficient for energy to be redistributed

through the system once the measurement conditions have been established. However,

if Γelτ is too small the elastic collisions are unable to ‘keep up’ with the continuous

dissipation. This cannot be rectified by simply increasing thold, and the system is

inherently out of equilibrium.

In Fig. 5.16b we plot Γelτ for each Tc measurement, suggesting that quasi-equilibrium

appears to be lost for a universal value of Γelτ , despite Γel ≈ 0.7-1000 s−1 and τ ≈ 2-

1000 ms individually varying by around three orders of magnitude. Also shown is the

hydrodynamic parameter Γel/ω̄ .

The recorded values of ∆Tc/T
0
c where Γelτ > 5 is violated have no quantitative

meaning, as they depend heavily on our initial conditions, as is intrinsically true to

all non-equilibrium phenomena. We can qualitatively interpret the results based on

our experimental procedure. In the small-a limit there is a smooth apparent rise in

Tc above T 0
c for a → 0. The loss mechanism in this regime is predominantly single-

body, affecting N0 and NT equally. Elastic collisions act to redistribute the atoms

between the two components to maintain an equilibrium population distribution. In

this case this corresponds to a net transfer of atoms from the condensate to the thermal

cloud. However, as a decreases so does Γelτ , and a condensate is observed for total

N lower than the expected equilibrium Nc (corresponding to a positive measurement

of ∆Tc/T
0
c ). Strictly speaking of course T is not defined out of equilibrium, but the

observed effect is sufficiently small that the fitted equilibrium distribution still provides

a good measure of the energy content of the cloud.

In the large-a limit, ‘super-heated’ condensates surviving at a temperature above

the equilibrium Tc are also observed, but the explanation here is less trivial. Three-body

losses affect the condensed and thermal fractions differently, the thermal component is
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Figure 5.16: a ∆Tc/T
0
c for N ≈ 4 × 105 atoms over the full experimental range, where all

data is taken using the procedure which assumes thermal equilibrium. The vertical dashed
lines show the bounds of thermal equilibrium. At both low and high a there is sharp deviation
from the smooth equilibrium curve (red line). b Equilibrium criteria, showing the values of Γelτ
(solid squares) and Γel/ω̄ (open circles) that correspond to each data point in a. The horizontal
dashed line shows Γelτ = 5. The onset of the hydrodynamic regime occurs at Γel/ω̄ = 1.

far from saturation and the cloud enters the hydrodynamic regime. Without further

investigation it is hard to give even a proper qualitative explanation for the outcome

observed in our system.

5.7 Conclusions

Using the beneficial properties of a Feshbach resonance in 39K and a novel differential

thermometry technique, we have taken high precision measurements of the Tc shift

over a far broader range of a/λ0 than has previously been achieved. In doing so we

have shown good agreement with mean-field theory below a/λ0 ≈ 0.01 , and above this

value observed positive deviation from mean-field theory, showing clear evidence for

the condensation-enhancing effects of critical correlations for the first time. In addition

we have probed beyond the regime in which equilibrium measurements can be taken.

In both very-weakly and very-strongly interacting limits non-equilibrium effects have

been observed. The results of this chapter are summarised in [158].

It is hoped that the new information provided by our investigation will act to

guide and encourage further theoretical studies of the difficult problem of beyond-

mean-field effects in a harmonically trapped gas. It would once again be of interest to
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study the behaviour in a variety of trapping geometries, tending towards a hard box

potential. Combined with direct investigation of local behaviour of a trapped gas using

in situ measurements, this could provide a clearer pathway to investigate the build-up

of coherence across a Bose gas.

It should be possible to extend the range of a/λ0 over which equilibrium measure-

ments can be taken by altering other system parameters in combination with a (with

which the three-body collision rate scales strongly). However, in our picture more pre-

cise measurements necessarily restrict the range that equilibrium measurements may

be taken over, so it is not clear whether it will be possible to reveal logarithmic terms

in the form of the Tc shift with this method.

The non-equilibrium behaviour seen will also vastly benefit from dedicated in-

vestigation in order to disentangle the competing effects in the strongly-interacting

regime. This should prove fruitful for comprehending condensation in intrinsically out-

of-equilibrium systems, such as polariton gases [104, 159].
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Chapter 6

Conclusion

“ Well, it was worth it, Jeeves.”

– P. G. Wodehouse (The Code of the Woosters)

In this concluding chapter a brief summary of the accomplishments from each aspect of

the work covered in this thesis is given, before the direction of more recent and future

work is discussed.

6.1 Summary

A timeline of key events in the history of the group since its foundation is shown in

Fig. 6.1. From this it is clear that the majority of experimental time over the course

of this PhD was spent creating the two working sets of apparatus to produce Bose-

Einstein condensates. Once a stable system for producing 39K BECs was in place,

the scientific investigations progressed rapidly and promise to continue to do so. The

primary achievements of the work described in this thesis are as follows.

• A single-chamber system has been created, allowing the rapid production (∼ 15 s

cycle) of 87Rb BECs of over 105 atoms in an optically plugged quadrupole trap.

This system is briefly described in Appendix B.
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Figure 6.1: Timeline of key events over the course of this thesis. The suffixes I and II refer to
the single-chamber and two-chamber experimental systems respectively. Dates are marked for
the first occurrence of magneto-optical trapping and Bose-Einstein condensation in each system
and for each atomic species. The publication dates of the papers [85, 116, 158] are also marked.
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• A two-chamber system has been created, and is only the second system worldwide

to have produced 39K BECs. These are held in a crossed-dipole trap, allowing

tuning of the strength of interactions in the system via a Feshbach resonance.

The maximum condensate number of over 4×105 is the highest ever reported for

this atomic species. In the same system it is possible to produce 87Rb BECs of

over 8×105 atoms. The setup and operating procedure are described in Chapters

2 and 3 respectively.

• The non-saturation of an interacting Bose gas in a harmonic trap has been quan-

tified, both near the critical point and for larger condensed fractions. Extreme

deviations from the behaviour of an ideal gas are seen, even for what are gen-

erally considered weak interactions. This goes against preconceptions that are

commonly held in the field. Excellent quantitative agreement with mean-field

theory is seen in the low-N0 limit, while extrapolation to the non-interacting limit

provides the most compelling experimental evidence to date of ideal saturation

as predicted by Einstein. This work is described in Chapter 4.

• The interaction induced Tc shift for the BEC transition has been experimen-

tally recorded at high precision over a greater range of interaction strengths than

ever before. Good agreement with mean-field theory is observed in the weakly-

interacting limit, while for stronger interactions beyond-mean-field effects have

been observed for the first time. The positive direction of this shift is in agree-

ment with widely accepted theoretical prediction. In addition to this, in both the

very-weakly and very-strongly interacting limits non-equilibrium behaviour has

been detected. This work is described in Chapter 5.

6.2 Outlook

It is hoped that the work carried out in the group thus far is just the tip of the

experimental iceberg. Now that the essential machinery is in place there is a wealth

of possible topics to explore, both as direct extensions to this work and other more

diverse projects. Several such areas for exploration at various stages of conception are

discussed below.

6.2.1 Condensed fraction induced by critical correlations

An investigation directly related to the work on the Tc shift has already taken place

[160]. The downside to the earlier study is that no straightforward link can be made

to the uniform system due to the intrinsic dependence of Tc on the global properties

of a non-uniform system. In the more recent work this problem is negotiated by ob-

serving the condensed fraction f0 = N0/N in a harmonic trap at the mean-field critical

number N = NMF
c > Nc. The condensed fraction observed at this point is then solely
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due to the effects of critical-correlations. Moreover, the effect is limited to the quasi-

uniform central region of the harmonic trap with volume ∝ (a/λ0)3. Combined with

the expected scaling n0/n ∝ ∆nc ∝ a/λ0 in a uniform system leads to a predicted

scaling f0 ∝ (a/λ0)4. This scaling has been experimentally observed. Furthermore, the

measured effect has been quantitively compared (via the local density approximation)

with the Monte Carlo simulated prediction for a uniform system, and shows excellent

agreement.

The ability to tune the strength of interactions with the 39K Feshbach resonance

was crucial to this investigation. Not only was it necessary to cover a wide range of

a/λ0 values and to use the differential measurement scheme, but also the largest value

of f0 recorded at N = Nmf
c was only ∼ 1 %. It was therefore essential to also use the

methods for precise measurement of small condensed fractions developed during the

saturation and Tc shift investigations.

6.2.2 Out-of-equilibrium studies

The non-equilibrium behaviour observed during the Tc shift measurement has sparked

further interest in this area. Studies are well underway into the dynamics of a Bose

gas equilibrating from an out-of-equilibrium starting point. The method involves the

preparation of an ultra-cold cloud at a relatively high scattering length (where there

is only a small condensed fraction) and then instantaneously reducing the scattering

length. The system that was in thermodynamic equilibrium suddenly is no longer,

as the value of Nc suddenly drops. At this point elastic collisions act to return the

system to equilibrium by the redistribution of energy between the atoms, resulting in a

rapid rise in the condensed fraction. The energy released by condensation results in the

heating of the remaining thermal atoms, which increases Nc, so that we do not simply

acquire the condensed fraction expected for the new scattering length at the original

temperature. The details of this process have recently been submitted for review [161].

It is also planned to start the process from a position where there is no initial BEC, to

observe the phase transition as driven by the change of interaction strength.

6.2.3 Two-dimensional Bose gases

The planned extension of the system to incorporate two-dimensional trapping has been

prepared, and will hopefully be implemented in the near future. This will allow direct

extension of the saturation experiment to reduced dimensionality, and allow detailed

studies of the Berezinskii-Kosterlitz-Thouless (BKT) transition [162, 163] with the abil-

ity to tune interactions. Two-dimensional Bose gases come with a rich variety of new

phenomena, where in a uniform system superfluidity exists in the absence of a BEC.

The addition of 2D trapping to the system will therefore open up another branch of

future research topics [164].
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6.2.4 Annular Bose-Einstein condensates

In a brand new direction, work has been carried out on the two-chamber system to allow

transfer of a BEC from the CDT to a ring-shaped trap, created by the intersection of a

red-detuned hollow Laguerre-Gauss beam with a thin light sheet. A two-photon Raman

process [165] is used to impart angular momentum to the 87Rb condensate. In a toroidal

geometry the BEC total angular momentum is quantised. The superfluid flow of the

BEC has been shown to perpetuate for long periods, showing the high metastability

of the state. There is currently much interest in the decay mechanism of the multiply-

charged quantised angular momentum, with possible parallels in systems ranging in

size from superconducting nano-wires to rotating (pulsar) neutron stars. The results

of these investigations have recently been submitted for review [166].

6.2.5 Power-law traps

The different scaling of physical parameters (such as non-saturation) with the trapping

potential make the study of gases in controllable power-law traps a topic of inter-

est [167]. This should be possible using overlapped blue-detuned beams with various

Laguerre-Gauss modes, enabling trapping from a typical harmonic potential through

to a near-homogeneous hard-walled potential [168]. This would increasingly enhance

the effects of critical correlations in a three-dimensional Bose gas, and may even lead

to direct global measurements of a close-to-uniform system. The tools necessary to

achieve such a scenario are well under way to being developed, with Laguerre-Gauss

beams already in use as described above. The direct measurements will involve new

interesting challenges, such as accurate temperature determination from the greatly

modified time-of-flight distributions expected from these traps. New techniques de-

veloped in this direction should prove interesting to the general community as well of

course as the results of the investigations themselves.

6.2.6 Superconducting magnetic trap

The single-chamber system is being redeveloped with the planned addition of a dipole

trap. It is also being used to test magnetic coils wound from high-temperature super-

conducting tape, which is now commercially available through AMSC. When cooled

with liquid nitrogen, this tape can support current densities of close to 10,000 A cm−2.

The coils in their present prototype form do not have any advantages over normal

copper-wound coils, but it is hoped that the proof-of-principal will allow advances in

the future to the advantage of cold atoms physicists. Possible benefits might include

the ability to position the coils further from the system than equivalent copper coils,

allowing greater optical access to experiments, or producing large magnitude magnetic

fields to, for example, access high-field Feshbach resonances. Another intriguing pos-

sibility would be to use persistent flow in the coils to produce highly-stable magnetic
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fields for experiments.

6.2.7 Final remarks

The outlook is promising for the group and the field as a whole, with many diverting

questions still open. While being proud of the scientific achievements of the last four

years, the real lasting legacy will hopefully be the two functional BEC systems cre-

ated during this period. The use of 39K in our system has been key to most of our

experiments thus far, and fully vindicates our choice to use this difficult species. The

experimental advantages of an accessible Feshbach resonance open up myriad possibil-

ities for the future of many-body research with quantum degenerate gases.
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Appendix A

Useful Physical Quantities

In this appendix some useful physical quantities are tabulated that are relevant to the

rest of the thesis. The physical constants in Table A.1 are the recommended CODATA

values [169]. The majority of the properties of 39K and 87Rb were collated in [23, 170]

(see references therein), while the scattering length data is taken from [65, 95, 171].

Quantity Symbol Value

Speed of light in free space c 2.99792458× 108 m s−1

Permeability of free space µ0 4π × 10−7 H m−1

Permittivity of free space ε0 = 1/(µ0c
2) 8.854187817...× 10−12 F m−1

Planck’s constant h = 2π~ 6.62606957(29)× 10−34 J s

Electronic charge e 1.602176565(35)× 10−19 C

Electron rest mass me 9.10938291(40)× 10−31 kg

Atomic mass unit u 1.660538921(73)× 10−27 kg

Bohr radius a0 = 4πε0~2/(mee
2) 5.2917720859(36)× 10−10 m

Boltzmann’s constant kB 1.3806488(13)× 10−23 J K−1

Bohr magneton µB = e~/(2me) 9.27400968(20)× 10−24 J T−1

Table A.1: Values for some fundamental physical constants, as recommended by the National
Institute of Standards and Technology [169].

µB/kB ≈ 2/3 K T−1 = 200/3µK G−1

µB/h ≈ 1.4× 1010 s−1 T−1 = 1.4 MHz G−1

h/kB ≈ 4.8× 10−11 K s = 48µK MHz−1

Table A.2: Useful quantities when considering RF evaporation in a magnetic trap.
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Property Symbol 39K 87Rb

Atomic number Z 19 37

Mass number A 39 87

Relative natural abundance η 93.2581(44) % 27.83(2) %

Atomic mass m 38.96370668(20) u 86.909180520(15) u

Vapour pressure at 25 ◦C Pv 2.42× 10−8 mbar 5.23× 10−7 mbar

Nuclear spin I 3/2 3/2

Electronic ground state 42S1/2 52S1/2

Table A.3: General properties of 39K and 87Rb.

Property Symbol 39K 87Rb

Frequency ω0/2π 389.286058716(62) THz 377.107463380(11) THz

Wavelength λ 770.10838505(12) nm 794.978851156(23) nm

Lifetime τ 26.37(5) ns 27.679(27) ns

Natural linewidth Γ/2π 6.03(1) MHz 5.7500(56) MHz

Table A.4: Optical properties of the 39K and 87Rb D1 lines.

Property Symbol 39K 87Rb

Frequency ω0/2π 391.01617003(12) THz 384.2304844685(62) THz

Wavelength λ 766.700921822(24) nm 780.241209686(13) nm

Lifetime τ 26.37(5) ns 26.2348(77) ns

Natural linewidth Γ/2π 6.035(11) MHz 6.0666(18) MHz

Recoil velocity vrec 13.357 mm s−1 5.8845 mm s−1

Recoil temperature Trec 418.06 nK 361.96 nK

Doppler temperature TD 144.82µK 145.57µK

|2, 2〉 → |3, 3〉 cycling transition, σ+ polarisation:

Saturation intensity Isat 1.750 mW cm−2 1.669 mW cm−2

Cross-section σ0 2.807× 10−9 cm−2 2.907× 10−9 cm−2

Table A.5: Optical properties of the 39K and 87Rb D2 lines.
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Property Symbol 39K 87Rb

Electron spin g-factor gS 2.00231930436153(53)

Electron orbital g-factor gL 0.99999369

Landé g-factor gJ 2.00229421(24) 2.00233113(20)

Nuclear g-factor gI -0.00014193489(12) -0.000 9951414(10)

Hyperfine splitting ∆Ehf/h 461.7197202(6) MHz 6834.68261090429(9) MHz

Table A.6: Ground state properties for 39K (42S1/2) and 87Rb (52S1/2), which may be used
in the Breit-Rabi equation (1.33).

Property Symbol 39K 87Rb

Singlet scattering length as 138.49(12) a0 90.0(2) a0

Triplet scattering length at -33.48(18) a0 98.99(2) a0

Interspecies singlet scattering length aKRb
s 824+90

−70 a0

Interspecies triplet scattering length aKRb
t 35.9(7) a0

Table A.7: Singlet and triplet scattering lengths for 39K and 87Rb.
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Appendix B

Small system

Much of the first year after our group was founded was spent getting to grips with

the experimental techniques required for atom trapping and cooling, taking the form

of the construction of a small single-chambered system. The original intention was to

create a magneto-optical trap for 87Rb, which would entail setting up a laser system,

a vacuum chamber, magnetic coils and computer control. The lessons learned while

developing this small system would then aid in the construction of the large system. It

soon became apparent though that we might push the limits of this small system, and

it was decided that we should attempt to use it to create a BEC. This was achieved

about a year after experimental work commenced in the lab.

The vacuum system is shown in Fig. B.1. The quartz optical chamber was made by

Triad Technology, and features seven radial 1” windows and two vertical 2” windows

for optical access, with a ∼ 1 cm diameter connection to the rest of the vacuum system.

The atom sources are of the same style as the large system, and vacuum is maintained

with a 40 l s−1 ion pump. The original laser system consisted of a stripped-down version

of that shown in Fig. 2.23. When the large system was first built, light was shared

between the two systems. The small system has since been moved to a different lab

with a new dedicated laser setup1.

The scheme for magneto-optical trapping is shown in Fig. B.2. The splitting

of the cooling and repumping light into six beams was initially achieved using the

Schäfter+Kirchhoff fibre-port cluster used in the main setup. This has now been

replaced with a home-built version. The field for the MOT is provided by a pair

of water-cooled magnetic coils situated just next to the 2” windows of the chamber.

These are capable of producing a quadrupole field gradient of up to 200 G cm−1 along

the weak axis, and are also used for capturing and holding the atoms magnetically after

an optical molasses stage.

The principal drawback to the single-chamber design is the short trapping lifetime

resulting from the necessity to have a reasonable 87Rb pressure for MOT loading. Once

the magnetic trap has been loaded the cooling process must therefore proceed rapidly.

1The compact nature of the small system meant that we could fit it on a small ‘bread-board’, so it
is easily transportable while still under vacuum.
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Figure B.1: Small system vacuum setup. a Turbomolecular pump. b Ion pump. c All-metal
right-angle valve. d Pressure gauge. e Optical chamber. f Atom sources. There is a window
on the opposite side of the vacuum system to the optical chamber to allow additional optical
access.

We thus choose to evaporatively cool the atoms using RF radiation directly in the

quadrupole trap, which provides tight confinement, aiding the thermalisation rate of

the cloud. This requires some means of suppressing Majorana spin flips at the magnetic

zero of the quadrupole trap. This we achieve with an ‘optical plug’, this being a tightly

focussed (∼ 30µm waist) blue-detuned gaussian beam directed at the trap centre. This

is the method that was used by the Ketterle group to create the first ever sodium BEC

[4]. We use plug light with wavelength in the range 700-740 nm produced by a Coherent

MR110 titanium sapphire laser pumped with a Verdi 18 W laser at 532 nm. Despite

the relatively close detuning of the plug beam there is very little heating and atom loss

through light scattering, as the tight focus of the laser produces a very steep barrier

near the trap centre.

The potential produced by the combination of the quadrupole field, optical plug

and evaporating RF field is shown in Fig. B.3. The potential is displayed as a cross-

section perpendicular to the optical axis of the plug and around the centre of the

quadrupole field. The plug beam is fired horizontally at the magnetic trap such that

the asymmetrical magnetic gradients in the vertical and radial directions result in two

distinct trap minima (the red regions in Fig. B.3). If the azimuthally symmetric

gaussian beam were instead directed along the vertical axis a ring-shaped minimum

would be formed. Small imperfections in the laser profile would then lead to one or
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Figure B.3: Potential produced by the combination of a quadrupole field, optical plug and
RF radiation. The plug beam is directed along one of the weak quadrupole axes. This produces
two distinct trap minima (shown by the red regions). The RF radiation used for evaporation
causes the quadrupole potential to ‘turn over’ as atoms are transferred into untrapped states.

more minima at random locations [172], so it is preferable to have the control provided

by our trap geometry. The resultant anisotropic harmonic trap frequencies for this type

of potential are given in [4].

The standard experimental sequence is as follows. We load rubidium atoms into the

MOT for around 5 s before turning off the magnetic field for 2.5 ms of optical molasses.

A 20µs burst of pumping light drives the atoms into the |2, 2〉 state for magnetic

trapping. The atoms are captured by suddenly turning the quadrupole field on with

a weak-axis field B′ = 32 G cm−1 before the cloud is compressed by increasing B′ to

100 G cm−1 in 0.5 s. An RF field is then turned on and held at 10 MHz for 0.3 s of plain

evaporation. At this point there are typically 108 atoms at 100µK. The RF frequency

is swept linearly to 2 MHz in 3 s, reducing both the atom number and temperature by a

factor of 10. To slow the loss rate due to three-body collisions we then decompress the

trap to B′ = 40 G cm−1 in 200 ms. Finally, we apply a final exponential evaporation

sweep from 1.4 MHz to a chosen final value in 0.5 s. This results in quasi-pure BECs

of over 105 atoms1. A sample sequence with increasing time-of-flight for a condensed

fraction of ∼ 30 % at ∼ 500 nK is shown in Fig. B.4. The bimodality of the cloud is

revealed as TOF increases and the thermal atoms expand more rapidly than the BEC.

The fact that we see only one BEC is due to the fact that the plug beam is aligned

1When BECs were being created in this manifestation of the small system we did not calibrate the
imaging fudge-factor described in §2.10.6. This atom number is therefore likely to be an underestimation
of the true value.
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Figure B.4: Optical density images of BECs with ∼ 30 % condensed fraction, released from
the optically-plugged quadrupole trap and imaged after 3-12 ms time-of-flight. As time-of-flight
increases, the bimodal distribution becomes apparent.

Figure B.5: Photograph of the trial system as it is now. The optical chamber can be seen
amongst the magnetic coils to the right-hand side of the picture. The original plug beam was
aligned with the axis of the connection between the optical chamber and the rest of the vacuum
system.

slightly off centre such that one trap minima is higher than the other. During the final

evaporation sweep all of the atoms in the higher minima are removed.

After a period of neglect the small system is now under new management and is

nearing a usable state once more. The disadvantage of the short trap lifetime is partially

compensated for by the extremely fast condensation process and overall simplicity of the

system. It is planned to add an optical dipole trap to the system for a comparison with

the plug, which has proved problematic at times due to the high alignment accuracy

required. The current incarnation of the system is shown in Fig. B.5.
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Appendix C

Popov Approximation

The Popov approximation extends Hartree-Fock theory to include small deviations

from standard Hartree-Fock theory in the form of Bogoliubov-like excitations. The

background of this theory may be found in several text-books, but the notation used

below follows that found in [29] most closely. Here it is used to predict deviations from

the Hartree-Fock description of non-saturation in a harmonically-trapped interacting

Bose gas. The semi-classical limit is taken once again, so the excited state density in

this picture (following equation (1.6)) is given as the familiar starting point:

nT (r) =
1

(2π~)3

∫
1

eε(r,p)/kBT − 1
dp . (C.1)

The chemical potential has been absorbed into ε(r,p) for the purposes of describing

the excitations. The process below was laid out by Jean Dalibard.

In the absence of a BEC the excitation spectrum takes the standard form

ε(r,p) =
p2

2m
+ 2gnT (r) + V (r)− µ . (C.2)

When a BEC is present we must first generalise the Thomas-Fermi relationship of (1.26)

to take account of the effects of the thermal atoms on the condensate distribution.

This gives the chemical potential as also required for the self-consistent Hartree-Fock

approach,

µ = V (r) + gn0(r) + 2gnT (r) . (C.3)

The factor of 2 before the excited state density appears due to the inclusion of the

exchange term for atoms in different states, which is thus absent for the condensate.

The form of ε(r,p) now reflects the revised excitation spectrum, found by diagonalising

a modified form of the Hartree-Fock Hamiltonian1. This is given by (from equation

(8.119) of [29]):

ε(r,p) =
[
ε2HF(r,p)− (gn0(r))2

]1/2
=

[(
p2

2m
+ 2gn0(r)

)
p2

2m

]1/2

, (C.4)

1The added term allows for creation and annihilation of momentum-conserving pairs of particles.
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where

εHF =
p2

2m
+ 2g(n0(r) + nT (r)) + V (r)− µ =

p2

2m
+ 2gn0(r) . (C.5)

In this case the relation (C.1) is modified by a factor to reflect the number of non-

condensed particles associated with an excitation:

nT (r) =
1

(2π~)3

∫
εHF(r,p)

ε(r,p)

1

eε(r,p)/kBT − 1
dp . (C.6)

The above equations are local, so we can simplify the situation by omitting the spatial

dependence for now and switching to dimensionless variables

P =
p√

mkBT
, A =

4a

λT
, D = nλ3

T , and κ =
µ− V
kBT

. (C.7)

Working in terms of the phase-space density D, we find in the purely thermal case (cf.

§5.2)

DT = g3/2(eκ−ADT ) . (C.8)

When a condensate is present this is replaced by

DT =

√
2

π

∫ ∞
0

P (P 2 +AD0)√
P 2 + 2AD0

1

eP
√
P 2+2AD0/2 − 1

dP , (C.9)

where

AD0 = 2(κ−ADT ) (C.10)

via equation (C.3). For computational purposes it is advantageous to use the substitu-

tion x2 = P 2(P 2 + 2AD0)/4 to rewrite (C.9) as

DT = I(κ−ADT ) , where I(z) =
2√
π

∫ ∞
0

[(z2 + x2)1/2 − z]1/2

ex − 1
dx , (C.11)

and to use the integral form of g3/2(ez) given in (1.9) for when there is no condensate.

Using z = κ−ADT , we must find the value z = zs that solves the equation

κ− z
A

= F (z) , (C.12)

where F (z) is defined for all z by

F (z) =

{
g3/2(ez) for z ≤ 0 ,

I(z) otherwise.
(C.13)

If zs is negative there is no BEC, and DT = (κ−zs)/A . If zs is positive, DT = (κ−zs)/A

and D0 = 2zs/A . Fig. C.1 gives a graphical representation of equation (C.12).

When κ ≤ 0 the solution is straightforward and zs ≤ 0 , corresponding to D0 = 0.

When κ > 0 there are three possible cases, dependent on A, labelled i-iii:

• i: If A is larger than some non-trivial value, there is a single solution where no
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Figure C.1: Graphical solutions for the self-consistent Popov approximation. Note that the
function F (z) is continuous at z = 0 . When κ ≤ 0 there is only one solution (as we consider
only positive A). When κ > 0 there are three possible cases, discussed in the text. For case ii,
where there are multiple solutions, we choose the negative z result.

condensate is present.

• ii: For some intermediate value of A smaller than this threshold but larger than

κ/ζ(3/2) there are three possible solutions, two with a condensate and one with-

out.

• iii: For A < κ/ζ(3/2) there again exists only one solution, this time giving a finite

condensate density.

We choose to omit the solutions of case ii for which a condensate is present, based only

on the assumption that the local phase-space density reaches the ideal ζ(3/2) before a

condensate appears. We therefore obtain solutions where D0 = 0 for κ ≤ ζ(3/2)A, and

D0 > 0 otherwise.

To find bulk solutions for a harmonically-trapped gas we consider the simple isotropic

case where the confining potential is given by V (r) = mω2r2/2 . To carry on working

with dimensionless variables we set

R =
r

RT
, where RT =

√
kBT

mω2
, (C.14)

and reinstate the position dependence of the other system parameters. κ is therefore

given by

κ(R) = α− R2

2
,where α =

µ

kBT
, (C.15)

183



and the number of atoms for each component is related to the phase-space density by

N0,T =
1

(2π)3/2

(
kBT

~ω

)3 ∫ ∞
0

4πR2D0,T [κ(R), A]dR . (C.16)

A final simplification is provided by setting S = R2/2 and giving the results in terms

of the ideal critical number N0
c , resulting in

N0,T

N0
c

=
2

ζ(3)
√
π

∫ ∞
0

√
SD0,T [α− S,A]dS . (C.17)

To calculate the data of Fig. 4.9 this procedure was carried out for the two most

extreme values of A used in experimental series. The data was then normalised for

comparison with both Hartree-Fock theory and the data by dividing by Nc, the value

of NT when N0 becomes finite in the Popov approximation, incorporating the inherent

shift of Nc for finite A.
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Appendix D

Assessment of absolute errors

D.1 Finite imaging time

When taking a photo of a moving object with a stationary camera (such as a tennis

ball in flight) the finite shutter time on the camera introduces motion blur, and the

object appears to be spread along its axis of motion. The same is true when imaging

the cloud of potassium atoms after tTOF = 20 ms time-of-flight, where it has a finite

velocity gtTOF, while the image is taken with a τimage = 80µs pulse of light (Fig.

D.1). The effect can be characterised by the ratio of the distance moved in this time,

d ≈ τimage × gtTOF, to the thermal width of the cloud RT ,

d′ =
d

RT
. (D.1)

In our experiment d ≈ 16µm, while RT ≈ 130µm for the lowest temperature data

series, giving d′ = 0.12. d here is a reasonable fraction of the thermal radius, and

instinctively one might think this would produce a large distortion in the measured

temperature.

To estimate the magnitude of the effect, the imaged cloud was modelled as an ideal

g2 exponential function. This was convolved with a unit box function of width d in the

vertical z direction, and the resulting distribution was fitted with a g2 function once

more where the x and z widths were permitted to vary independently. The data within

a single thermal radius RT was excluded from the fit, which results in a perceived

temperature closer to the true value. The temperature shift is extracted by squaring

the widths given by the fit. The results of this investigation are shown in Fig. D.2.

Temperature shifts ∆Tx and ∆Tz are found for the horizontal and vertical directions,

and the average ∆Tav is also shown. Of course the effect is predominantly along the

direction of motion z, but there is also a small shift in the horizontal direction.

Surprisingly the effect is negligible for even our coldest clouds, only exceeding the

per cent level for d′ & 0.5 . The scaling of d′ shows that the effect is enhanced for

increasing τimage or for particularly cold clouds and massive atoms. It is interesting to

note that for long time-of-flight (when the cloud width is much greater than its in-trap

width) RT ≈
√
kBT/m× tTOF, meaning d′ is essentially independent of time-of-flight.
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Figure D.1: Illustration of the effect on the perceived cloud width for an atom cloud that
is falling during imaging. The effect is analogous to motion blur in photography. a A tennis
ball falling at ∼ 2.5 m s−1 captured with a shutter time of 1/800 s is sharp, and the size is
easily measured. b When the shutter time is increased by a factor of 8 the image of the ball
is noticeably blurred vertically. c A cloud imaged with a short imaging pulse (i.e. d′ ≈ 0)
shows the characteristic circular symmetry of free thermal expansion. d If the imaging time is
increased the image is blurred along the z direction, leading to inaccuracies in the temperature
measurement. Here d′ = 0.75 to emphasize the effect.
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Figure D.2: Temperature measurement error ∆T caused by motion blur with finite imaging
time. The error is dominated by the spreading of the distribution along the z-axis. The greyed
region represents the range of d′ covered by our measurements. The errors of � 1% may be
safely ignored.
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The key point for us though is that the shift is � 1% for all our measurements, so it

can safely be ignored.

D.2 Feshbach field curvature

The Feshbach coils were designed to be as close to Helmholtz configuration as pos-

sible, but they nonetheless produce a finite radial field curvature, calculated to be

∼ 0.00325 G cm−2 A−1 . The zero crossing of the Feshbach resonance is reached with

a current of 129 A, so during time-of-flight the atoms experience a field curvature

−B′′/2 ≈ 0.42 G cm−2. This causes radial deceleration of atoms in the expanding

cloud (acceleration for negative curvature) as they fall along the z-axis. Assuming this

simple quadratic form for the field magnitude holds over the region in which the atoms

move we may again use a simple model to calculate the magnitude of the effect of

this curvature. For positive curvature we simply have a very weak harmonic trap with

trapping frequency ωFB and it is straightforward to calculate the radial motion of the

atoms. Assuming all the particles start at the centre of this weak potential the final

position is given (in a one-dimensional description) by

x =
vi

ωFB
sin(ωFBtTOF) , (D.2)

where vi is the initial velocity of the atom. The position the particle would have reached

without the field curvature is x0 = vitTOF. The perceived temperature T divided by

the real temperature T0 is then simply given by

T

T0
=

(
x

x0

)2

=
sin2(ωFBtTOF)

(ωFBtTOF)2
. (D.3)

For negative field curvature a similar expression involving sinh rather than sin is found.

The value for ωFB with the above field curvature for our potassium atoms in the |1, 1〉
state is ∼ 2π×1.2 Hz, so for our 20 ms TOF the field curvature should cause a perceived

shift in Tx of ∼ −0.8%. The cloud temperature is calculated from Tz as well, so this

shift can be halved. This can’t accurately be accounted for as the field won’t be purely

quadratic and all of the atoms aren’t released from the centre of the Feshbach field.

However, the rough magnitude of the effect is still small enough to be ignored, though

it is large enough to be wary of in other experimental setups using large Feshbach bias

fields.
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& C. Chin. Determination of atomic scattering lengths from measurements of molecular

binding energies near Feshbach resonances. Phys. Rev. A 79, 013622 (2009).

[17] C. Chin, R. Grimm, P. Julienne & E. Tiesinga. Feshbach resonances in ultracold gases.

Rev. Mod. Phys. 82, 1225 (2010).

[18] N. N. Bogoliubov. On the theory of superfluidity. J. Phys. (USSR) 11, 23 (1947).

[19] L. Pitaevskii & S. Stringari. Bose-Einstein Condensation (Oxford University Press, 2003).

[20] C. J. Foot. Atomic Physics (Oxford University Press, 2005).

[21] E. Arimondo, M. Inguscio & P. Violino. Experimental determinations of the hyperfine

structure in the alkali atoms. Rev. Mod. Phys. 49, 31 (1977).

[22] N. Bendali, H. T. Duong & J. L. Vialle. High-resolution laser spectroscopy on the D1

and D2 lines of 39,40,41K using RF modulated laser light. J. Phys. B: At. Mol. Phys. 14,

4231 (1981).

[23] D. A. Steck. Rubidium 87 D line data. http://steck.us/alkalidata/ (23rd December

2010).

[24] G. Breit & I. I. Rabi. Measurement of nuclear spin. Phys. Rev. 38, 2082 (1931).

[25] R. Grimm, Weidemüller & Y. B. Ovchinnikov. Optical dipole traps for neutral atoms.

Adv. At. Mol. Opt. Phys. 42, 95 (2000).

[26] L. D. Landau & E. M. Lifshitz. Quantum Mechanics (Elsevier, 1981), third edn.

[27] B. H. Bransden & C. J. Joachain. Physics of Atoms and Molecules (Prentice Hall, 2003),

second edn.

[28] J. Dalibard. Collisional dynamics of ultra-cold atomic gases. In M. Inguscio, S. Stringari

& C. Wieman (eds.) Proceedings of the International School of Physics Enrico Fermi,

Course CXL: Bose-Einstein condensation in gases, Varena 1998 (Addison-Wesley, 1998).

[29] C. J. Pethick & H. Smith. Bose-Einstein Condensation in Dilute Gases (Cambridge

University Press, 2008), second edn.

[30] K. Huang. Statistical Mechanics (Wiley, 1987), second edn.

[31] E. Braaten & H. W. Hammer. Universality in few-body systems with large scattering

length. Phys. Rep. 428, 259 (2006).

[32] L. S. Butcher, D. Stacey, C. J. Foot & K. Burnett. Ultracold collisions for Bose-Einstein

condensation. Phil. Trans. R. Soc. Lond., Ser. A 357, 1421 (1999).

[33] H. R. Thorsheim, J. Weiner & P. S. Julienne. Laser-induced photoassociation of ultracold

sodium atoms. Phys. Rev. Lett. 58, 2420 (1987).

190

http://steck.us/alkalidata/


[34] A. J. Moerdijk, B. J. Verhaar & A. Axelsson. Resonances in ultracold collisions of 6Li,
7Li, and 23Na. Phys. Rev. A 51, 4852 (1995).
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