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Abstract

This thesis describes the first ever implementation of an atomic Bose-Einstein con-

densate (BEC) in a uniform three-dimensional system. We prepare a degenerate

sample of 87Rb in a customizable uniform box trap and perform a range of experi-

ments demonstrating fundamental quantum-mechanical and statistical effects.

A dilute vapour of 87Rb atoms is first cooled to degeneracy in a conventional

harmonic trap. The single-chamber apparatus described in this thesis utilizes evap-

orative cooling in an optimized hybrid trap to produce large degenerate samples of

over 3 × 105 atoms with a repetition rate of 25 s. The partially condensed gas is

then loaded into a uniform optical box formed by intersecting three specially shaped

blue-detuned laser beams: two parallel sheet-like beams cross a tube beam at right

angles, creating a dark cylinder-shaped trap. The gravitational force is cancelled

using an external magnetic field gradient, creating a region of space with a nearly

uniform potential. The gas is than evaporatively cooled to condensation in the

uniform trap.

We than study partially condensed samples using absorption imaging in time of

flight. We develop the methods necessary to extract thermodynamic properties of

the sample from these images. We characterize the critical point for condensation

and observe saturation of the thermal component in a partially condensed cloud, in

agreement with Einsteins textbook picture of a purely statistical phase transition.

Further, we observe the quantum Joule-Thomson effect, namely isoenthalpic cooling

of an (essentially) ideal gas. In our experiments this cooling occurs spontaneously,

due to energy-independent collisions with the background gas in the vacuum cham-

ber. We extract a Joule-Thomson coefcient µJT > 109 K/bar, about ten orders of

magnitude larger than observed in classical gases. We show that quantum-statistical

effects dominate over the interaction effects.

Lastly, we study the ground-state properties of the homogeneous atomic Bose

gas using high-resolution Bragg spectroscopy. For a range of box sizes, up to 70µm,

we directly observe Heisenberg-limited momentum uncertainty of Bose-condensed
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atoms. We measure the condensate interaction energy with a precision of kB×100 pK

and study, both experimentally and numerically, the dynamics of free expansion of

the interacting condensate released from the box potential. All our measurements

are in good agreement with theoretical expectations for a perfectly homogeneous

gas, which also establishes the uniformity of our optical-box system on a sub-nK

energy scale.

While uniform systems have always provided a basis for the theoretical descrip-

tion of ultra-cold Bose gases, all experimental studies to date where conducted in

non-uniform external potentials, most commonly in harmonic traps. Our experi-

ments allowed the first direct experimental validation of many theoretical predic-

tions, and paved the way for future novel studies.
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Chapter 1

Introduction

1.1 Background

Quantum mechanics has proven to be one of the most successful modern-day phys-

ical theories, its fundamentals remaining unchallenged for nearly a century. From

the early 20th century onwards, the description of many-particle systems has been

central to the development, understanding and applications of the quantum theory:

while a single particle in an external potential is, in many cases, a useful model, our

world is inherently many-particle. Indeed, most phenomena in areas as varied as

atomic physics, condensed matter physics, and stellar physics, can only be under-

stood in terms of a fully quantum theory. Historically significant examples include

superfluidity, superconductivity, and neutron stars.

Interestingly, Planck’s quantized description of black-body radiation - one of

the most significant steps towards a consistent quantum theory, implicitly intro-

duced several of the key concepts that were to prove instrumental in extending

single-particle quantum mechanics (which was, in fact, not formulated carefully un-

til decades after Planck) to many-body systems. These concepts are: first, the

identification of microstates in statistical mechanics with different occupations of

quantized energy levels; second, the indistinguishability of identical particles; and

third, the classification of all particles (elementary or composite) into two classes,

namely bosons and fermions, depending on their spin. We briefly review each in

turn.

First, we recall that for any particle confined in an external potential, quantum

theory predicts the existence of discrete energy levels, each with their associated

eigenstate, that the particle can occupy. For example, a quantum-mechanical har-

monic oscillator has the energy levels En = (n+ 1/2)~ω for n = 0, 1, 2, . . ., where ω

13



1.1. BACKGROUND

is the corresponding “classical” oscillation frequency. If the oscillator is in thermal

equilibrium with a bath of temperature T , the probability to find state N occupied

is proportional to the Boltzmann factor exp[−En/(kBT )]. The probalility to find the

particle in it’s ground state (n = 0) increases rapidly as the temperature is reduced

below kBT ∼ ~ω. We would say that at this temperature the system transitions

from a predominantly incoherent thermal state, described well by classical statistical

mechanics, into one that is predominantly coherent and thus fully quantum.

If the same harmonic trap contains many non-interacting particles, each will

occupy one of the energy levels En. We would have to associate a microstate, with

its respective energy, with each possible arrangement of the particles between the

levels. For example, 3 particles could be distributed as follows: particle 1 in level 0,

particles 2 and 3 in level 1, or particle 2 in level 0, particles 1 and 3 in level 1, etc.

[Fig. 1.1 (a)]. However, as long as the particles are distinguishable, each will behave

essentially independently from the others.

0

1

2

0

1

2

1

2 3

(a) (b)

0

1

2

2

1 3

0

1

2

3

1 2

Figure 1.1: Three different microstates of distinguishable particles (a), and the

corresponding single microstate of indistinguishable particles (b).

This changes if the particles are indistinguishable - since we can only tell the

number of particles in each state, all three microstates in the above example are

identical, and there is only one microstate corresponding to 1 particle in level 0 and

2 particles in level 1 [Fig. 1.1 (b)]. In addition, quantum mechanics places limitations

on the allowed occupation number for each level: for particles with a half-integer

spin - fermions - it can only be 0 or 1, while for particles with integer spin - bosons

- it is unrestricted1.

The occupations of different levels in an ensemble of identical particles will thus

be described by a different statistical distribution depending on the type of particles:

Fermi-Dirac statistics [1,2] for fermions, and Bose-Einstein statistics [3] for bosons.

Further, both distributions will deviate significantly from their classical counterpart

1Strictly speaking, the constraint is on the exchange symmetry of the many-particle wavefunc-

tion (odd for fermions, even for bosons). We must thus consider a basis of suitable many-particle

eigenstates. However, it can be shown that the description given in the text is identical for the

purposes of statistical mechanics.
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1.1. BACKGROUND

for temperatures much higher than ~ω: in fact, quantum-mechanical nature will

manifest itself for kBT ∼ N1/3 × ~ω, where N is the number of particles - a large

factor for most macroscopic systems2. Such a gas is called degenerate. A degener-

ate Fermi gas is characterised by nearly constant occupation over low-lying levels

up to a given threshold, with a rapid decrease in occupation for higher energies

[Fig. 1.2 (a)]. A degenerate Bose gas exhibits macroscopic occupation of the ground

state [Fig. 1.2 (b)] - this is because at any given T , Bose-Einstein statistics only allow

finitely many particles in the excited states (n > 0), the excess forcibly accumulat-

ing in the ground state. This behaviour of bosons was first studied theoretically by

(a) (b)

Figure 1.2: Typical occupation of low-lying energy levels in a degenerate Fermi (a)

and Bose (b) gas.

Einstein [4, 5], and bears the name of Bose-Einstein condensation, hinting at the

fact that, thermodynamically, it represents a (second-order) phase transition - one

driven by quantum statistics rather than inter-particle interactions. Both superflu-

idity and superconductivity have since been linked to the behaviour of degenerate

bosons. While these systems are generally dense and strongly interacting, the pro-

duction of weakly interacting “textbook” condensates eluded experimentalists for a

further 70 years. Most gases undergo an interaction-driven transition to a liquid (or

solid) phase long before they reach quantum degeneracy. This necessitates the use

of extremely dilute clouds, pushing the transition temperature into the nK range.

Development of techniques that would allow cooling to these low temperatures thus

presented the main experimental challenge, that was eventually overcome by the

groups of Wieman and Cornell [6] and Ketterle [7] in 1995.

The Bose-Einstein condensates (BECs) of ultra-cold atoms have since proven to

be a highly prolific system for fundamental studies, not least because they allow

tuning of a wide range of parameters - from trapping geometry to inter-particle in-

teraction strength. Suggested applications include quantum computing, simulations

of superfluid and superconducting behaviour, and precision metrology [8].

2The exact scaling with N will depend on the external trapping potential, e.g. taking the form

N2/3 in a uniform system (see Chapter 2)
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1.2. THESIS OUTLINE

However, most experiments on ultra-cold atomic gases to date have been con-

ducted in harmonically trapped atomic clouds, while conventional many-body sys-

tems are uniform and transitionally invariant. Various methods have been developed

to overcome this problem and extract uniform-system properties from a harmoni-

cally trapped sample [9–18] - most rely on the local density approximation (LDA, see

later). Sometimes harmonic trapping can even be advantageous, allowing simultane-

ous mapping of uniform-system properties at different (local) particle densities. On

the other hand, in many important situations local approaches are inherently limit-

ing, for example, for studies of critical behavior with diverging correlation lengths.

The possibility to directly study a spatially uniform quantum-degenerate gas has

thus remained an important experimental challenge. So far, atomic Bose-Einstein

condensates (BECs) have been loaded into elongated [9] or toroidal [10] traps that

are uniform along only one direction while still harmonic along the other two direc-

tions.

This Thesis describes the first ever implementation of a truly uniform degener-

ate Bose gas, as well as a variety of experimental studies performed on this system.

While many of the techniques we use to study uniform Bose-Einstein condensates

derive from those used previously on harmonically trapped clouds, there are also

significant differences which we seek to highlight throughout this work. Our mea-

surements allow the most direct tests of the theory of the uniform Bose gas, but

also serve as a benchmark for the quality of our system and its suitability for future

studies.

1.2 Thesis outline

This thesis is structured as follows:

� Chapter 2 provides a review the theoretical framework used to describe Bose-

Einstein condensates in arbitrary power-low potentials, including the uniform

case.

� Chapter 3 contains technical details of our BEC experiment, and describes

production of harmonically trapped condensates.

� Chapter 4 explains how we succeeded in creating a uniform box trap, and

explains how the atoms can be loaded from the harmonic into the box trap

and cooled to degeneracy.
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1.3. PUBLICATIONS ARISING FROM THIS WORK

� Chapter 5 presents an extensive characterization of the thermodynamic prop-

erties of partially degenerate uniform clouds, including transition temperature

and heat capacity.

� Chapter 6 focuses on the ground state properties of the uniform BEC, and

presents results of two-photon Bragg spectroscopy performed on quasi-pure

samples.

� Finally, in Chapter 7 we summarize our findings and point out potential im-

plications of our work and future research directions.

1.3 Publications arising from this work

Many of the results presented in this Thesis were published over the course of the

past few years.

1. Methods described in Chapter 3 are summarized in

I. Gotlibovych, T. F. Schmidutz, S. Moulder, R. L. D. Campbell, N. Tammuz,

R. J. Fletcher, A. L. Gaunt, S. Beattie, R. P. Smith, and Z. Hadzibabic, “A

compact single-chamber apparatus for Bose-Einstein condensation of 87Rb,”

arXiv:1212.4108, Dec. 2012 [19]

2. Key experimental results of Chapter 4 first appeared in

A. L. Gaunt, T. F. Schmidutz, I. Gotlibovych, R. P. Smith, and Z. Hadzibabic,

“Bose-Einstein Condensation of Atoms in a Uniform Potential,” Physical Re-

view Letters, vol. 110, p. 200406, May 2013 [20]

3. Experimental studies presented in Chapter 5 formed the basis for

T. F. Schmidutz, I. Gotlibovych, A. L. Gaunt, R. P. Smith, N. Navon, and

Z. Hadzibabic, “Quantum Joule-Thomson Effect in a Saturated Homogeneous

Bose Gas,” Physical Review Letters, vol. 112, p. 040403, Jan. 2014 [21]

4. Measurements presented in Chapter 6 were published in

I. Gotlibovych, T. F. Schmidutz, A. L. Gaunt, N. Navon, R. O. Smith, and Z.

Hadzibabic “Observing the Ground-State Properties of an Interacting Homo-

geneous Bose Gas” in preparation, 2014 [22]
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Chapter 2

Theory of the Ideal Bose Gas in

an External Potential

In this Chapter, we briefly review the important theoretical results on the thermo-

dynamics of an ideal Bose gas confined in a power-law potential, to be referred to

repeatedly in subsequent chapters. We start by considering a power-law potential

of the form

U(r) =
∑
i

Ai|xi|si (2.1)

in three dimensions (i = 1, 2, 3). A potential with s1 = s2 = s3 = s (or, more

generally, s−1 = (s−1
1 + s−1

2 + s−1
3 )/3) will have the same thermodynamic properties

as the corresponding spherically-symmetric potential U(r) = Ars. Thus, s = 2 cor-

responds to a harmonic trap, while a uniform trap is obtained in the limit s→∞1.

Finding the discrete single-particle energy levels is generally non-trivial2. However,

most of the time we are dealing with a large number of excited states, and it is

convenient to replace all thermodynamic sums over these states by integrals of the

form
n∑
i=1

f(εi)εi ≈
∫ εn

0

f(ε)g(ε)dε, (2.2)

where we have defined the density of states g(ε). Approximating the number of

accessible states with energies in the interval [ε, ε + dε] by g(ε)dε is known as the

semi-classical approximation [23]. In degenerate Bose gases, this approximation

obviously breaks down for the ground state, which must be treated separately.

1At the same time, we must set Ai ∝ r−si0 if we are to maintain a constant volume.
2Well-known textbook cases which have analytic solutions include the harmonic trap and the

rectangular uniform box.
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The functional form of g(ε) depends on the trapping potential. We define the

parameter α according to

α =
3

2
+
∑
i

1

si
or α =

3

2
+

3

s
. (2.3)

Our definition of α is consistent with [23], while [24] uses η ≡ α − 1. Using this

definition, the in-trap density of states can be written as [23,24]

g(ε) = Cαε
α−1 ≡ 1

Γ(α)Eα

(
ε

Eα

)α−1

, (2.4)

where Γ(α) =
∫∞

0
xα−1e−xdx is the gamma function. On dimensional grounds, Eα

must be proportional to the ground state energy E0 of the respective trap. For a

harmonic trap with frequencies (ωx, ωy, ωz) and a uniform trap with volume V , we

find the following results:

harmonic uniform

ω̄ = (ωxωyωz)
1/3 l̄ = (lxlylz)

1/3 = V 1/3

α = 3 3/2

Ē0 = ~ω̄ π2~2/(2ml̄2)

Eα = Ē0 (4/π)Ē0

The thermodynamics of a Bose gas in the potential U(r) can be described uniquely

in terms of g(ε), temperature T and the chemical potential µ. In the case of a uni-

form system with constant volume, these reduce to the known variables (V, T, µ),

suggesting the grand potential Ω(V, T, µ) as a suitable starting point [25] for all ther-

modynamic calculations3. Within the semi-classical approximation, we can compute

the total atom number N , energy E and grand potential Ω in terms of the chemi-

cal potential µ. Noticing that positive occupation numbers in Bose statistics imply

µ ≤ 0, we find that the integral over the thermal occupancies of all excited states

Nth → Nc as µ→ 0−. Using the above notation, we find

Nc = ζ(α)

(
kBT

Eα

)α
, (2.5)

where ζ(α) =
∑∞

i=1 i
−α is the Riemann zeta function. For N > Nc the ground state

occupation N0 becomes macroscopic, and must be treated as an additive term to all

our integrals - the particles in the ground state form a Bose-Einstein condensate.

3(V, T, µ) are known as the natural variables of the thermodynamic potential Ω. The system is

fully described by Ω(V, T, µ), for example the energy can be expressed as E = dΩ
dβ .
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Inverting the above equation, we can define the critical temperature Tc at fixed atom

number as

kBTc =

(
N

ζ(α)

)1/α

Eα. (2.6)

We define the dimensionless temperature τ by rescaling to the critical temperature

(2.6):

τ =
T

Tc
. (2.7)

Another useful quantity is the fugacity

Z = eβµ, (2.8)

with β = 1
kBT

.

The entropy S can be calculated from Ω using S = − dΩ
dT

∣∣
V,µ

. It is easy to show

that the contribution of the ground state atoms to Ω, E and S is negligible for

all but the lowest temperatures (T � Tc). We can therefore set the ground state

energy to 0. In Table 2.1, we summarize the results in the cases T ≤ Tc, T ≥ Tc and

T � Tc. Throughout this thesis, gα(z) =
∑∞

i=1 i
−αzi is the polylogarithm function,

with gα(0) = ζ(α). For T ≤ Tc, we have µ = 0 and thus Z = 1. For T � Tc we

have Z � 1 and we can approximate gα with its truncated series.

Table 2.1: Important thermodynamic properties of a BEC in a general power-law

trapping potential.

temperature τ ≤ 1 τ ≥ 1 τ � 1

fugacity Z = 1 Z < 1 Z � 1

N = Nc +N0
gα(Z)
ζ(α)

Nc
Z
ζ(α)

Nc

Nth

N
= τα 1 1

Ω
kBT

= − ζ(α+1)
ζ(α)

Nth −gα+1(Z)
gα(Z)

N −N

E
kBT

= α ζ(α+1)
ζ(α)

Nth α gα+1(Z)
gα(Z)

N αN

S
kB

= (α + 1) ζ(α+1)
ζ(α)

Nth

[
(α + 1)gα+1(Z)

gα(Z)
− ln(Z)

]
N

[
(α + 1) + ln

(
τα

ζ(α)

)]
N

It is worth noting that within the local density approximation (LDA), the peak

thermal phase space density in the trap ρ = nλ3
T , defined in terms of peak atom
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density n and the thermal wavelength λT = (2π~2/mkBT )
1/2

, approaches its peak

value of ζ(3/2) = 2.612 for τ → 1+. Since ρ ∝ n, we can write

ρ = ζ(3/2)τ−α. (2.9)

In the limit τ � 1, this allows us to write the entropy S in terms of ρ only - we

shall exploit this fact subsequently.
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Chapter 3

The Testbed: a Single-Chamber

Ultracold Atom Experiment

The aim of this Chapter is to provide an overview of the design and construction

of the apparatus [19] that formed the backbone of all experiments described in this

Thesis. The system was initially built for training and was used in the early cooling

experiments in our group [26–28]. This was to form the seed for a new, indepen-

dent BEC experiment. While re-using an existing design promised to shorten the

construction time, we were hoping to create a machine that would offer the perfor-

mance and flexibility sufficient for a variety of proof-of-principle studies. Specifically,

building on the existing design, we were hoping to optimize it to achieve most of

the following:

� robust performance

� high atom numbers in a harmonic BEC

� high repitition rates

� easy optical access for future experiments

� space for additional coils, optics etc.

As proven by the various experiments described in subsequent Chapters, the system

fulfilled all of these criteria. During my PhD, the original “donor” vacuum system

had to be disassembled, cleaned, reassembled and baked. The new laser system

went through several iterations before becoming fully operational, and the magnetic

coil arrangement evolved in accordance with our experimental needs. We further

chose to implement a hybrid magnetic-optical trap introduced by Lin et al. [29], in
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3.1. THE VACUUM SYSTEM

which we were able to reliably produce quasi-pure BECs of > 3 × 105 atoms with

a repetition of over 1/30 s−1. This is comparable to or exceeds most multi-chamber
87Rb setups. Efficient production of harmonic BECs provides an indispensable tool

for further studies described in this Thesis. Nonetheless, considering the low cost,

simplicity and excellent optical access of the system described in this Chapter, we

feel that it warrants some interest in its own right. Our implementation will be

of interest to groups wanting to design simple and cost-efficient BEC machines for

various applications

Below, we describe the design considerations that guided the construction of

the system, explain the BEC production sequence and quantify its performance at

various stages.

3.1 The vacuum system

3.1.1 General considerations

Ultra-cold atom experiments typically require an ultra-high vacuum (UHV) environ-

ment. The atomic sample of relatively high density n is confined to a certain region

of the vacuum chamber using a variety of techniques. Outside this region, UHV

conditions prevail, and the background gas has a much lower density nbg � n. This

is necessary because scattering and heating due to (two-body) collisions with the

background gas limit any experiment to a timescale of the order τbg = Γ−1
bg , where

Γbg is the corresponding collision rate [27]. Besides limiting the time available for

conducting any useful experiments, τbg first and foremost determines the feasibility

of creating a degenerate sample in thermal equilibrium. In fact, as we shall see below

(see 3.5), the timescale for thermal equilibration, τeq = Γ−1
eq , is the lower bound on

the time needed to cool any sample evaporatively. The simple timescale argument

suggests that the collision rates in our experiment must satisfy

τbg & τeq, (3.1)

or, equivalently, Γbg . Γeq. (3.2)

Note that for simplicity we consider two-body collisions only. The collision rates

for two- and three-body processes scale as n and n2, respectively, meaning that the

two-body rate dominates for all but the highest densities in our experiments (∼
1014 cm−3; see e.g. [30] and references therein). Then, assuming the mean velocities

of the trapped and background atoms are v̄ and v̄bg, respectively, and with σ being
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3.1. THE VACUUM SYSTEM

the typical collision cross-section, we find:

Γbg ∼ σnbgv̄bg, (3.3)

Γeq ∼ σnv̄. (3.4)

Strictly speaking, the applicable value for σ depends on the relative velocity, but we

shall neglect the fact for an order-of-magnitude estimate. Typical values will range

from the high-temperature hard-ball limit, 4πr2 (r being the atomic radius), to

the low-temperature scattering cross-section 8πa2 (a being the effective scattering

length), but the difference is irrelevant for the argument presented here. Now,

assuming our sample is at a temperature T , while the background gas has Tbg ≈
300 K, and remembering that v̄ ∝

√
T ,we can re-write (3.2) as

nbg . n
√
Tbg/T . (3.5)

Consider we want to crate a uniform BEC of N = 105 atoms at T = 30 nK in a box

with volume V = 30 × 30 × 30µm3. The atom density in the trap is n = N/V =

4×1012 cm−3, the temperature ratio is Tbg/T = 1010, and (3.5) requires nbg . 10−5n,

corresponding to a background pressure

pbg = nbgkBT . 1.5× 10−9 mbar.

It has to be remembered that this is an absolute upper bound on pbg, while typical

pressures will be in the region of 10−11 mbar. During the early cooling stages, n is

typically much smaller than the value assumed above.

τbg can be easily identified as the 1/e lifetime of a trapped sample: assuming

atoms are predominantly lost via two-body collisions with the background gas, the

in-trap atom number will evolve according to

Ṅ = − 1

τbg

N = −c1nbgN. (3.6)

Measuring τbg gives us a simple way to quantify the background pressure in the

immediate vicinity of the cold atomic cloud, without resorting to expensive gauges.

3.1.2 Sources of 87Rb atoms

At this point, it might seem that our aim is to reduce the background pressure

as far as possible. However, loading atoms into the trap imposes contradicting

requirements. The starting point of most cooling sequences is loading the atoms

into a magneto-optical trap (MOT, see 3.4). This can be achieved in one of several

ways:
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3.1. THE VACUUM SYSTEM

� using a chirped [31] or Zeeman [32] slower

� from a 2D MOT [33,34]

� directly from the background gas, as described here.

The last option was chosen in our setup because of its proven simplicity and reli-

ability. It relies on a the background pressure of 87Rb in the chamber to load the

MOT. The loading rate depends only on the MOT geometry and is proportional to

the background density of 87Rb, nRb. Releasing 87Rb into the chamber increases the

background gas density, which we now write as nbg = nbg,0 +nRb. We can now write

the rate equation similar to (3.7) for the atom number in the MOT:

Ṅ = −c1(nbg,0 + nRb)N + c2nRb. (3.7)

Setting N(0) = 0, we find the solution has the form

N(t) = Nmax (1− exp(−t/τMOT)) , (3.8)

τ−1
MOT = c1(nbg,0 + nRb) = c1nbg = τ−1

bg , (3.9)

Nmax =
c2

c1

nRb

nbg,0 + nRb

. (3.10)

The two noteworthy features of this solution are:

� first, the 1/e MOT loading time τMOT is identical to the lifetime of a trapped

sample τbg, and both decrease with nRb

� second, the maximum MOT loading Nmax increases with nRb until nRb � nbg,0

We see that, while reducing the density of contaminants nbg,0 remains beneficial, the

required background 87Rb density is determined by balancing the benefits of increas-

ing the atom number in the MOT against the decrease in lifetime. The resulting

limitations on trapping time can be circumvented in a two-chamber experiment,

where the MOT chamber is kept at a higher background pressure than the “sci-

ence chamber” by differential pumping, and the atoms are transferred between the

two spatially separated regions by using suitable moving trapping potentials. The

improved lifetime generally comes at the cost of increased complexity and reduced

repetition rate. In our experiments, we followed a different approach: building on

the group’s previous experience with a single-chamber setup, we were hoping to op-

timize the background pressure (as well as the later stages of the BEC production

sequence) in order to achieve excellent performance within the limitations of our
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3.1. THE VACUUM SYSTEM

vacuum topology. Further, our system provides sufficient optical access for complex

experiments.

The choice of atomic sources affects the performance of a single-chamber 87Rb

system markedly. This is because the natural abundance of 87Rb is only 28%. When

using an atom source with the natural isotope ratio, the remaining 72% of 85Rb will

contribute to nbg,0, but not to nRb in (3.9) and (3.10). A simple estimate using the

above model shows that, the background pressure and thus the lifetime τbg being

equal, the achievable MOT loading scales directly as the relative abundance of the

trappable isotope. By using a source of isotopically pure 87Rb, we can theoretically

achieve a 3.6-fold enhancement in the MOT loading. We shall see that this translates

into even greater gains later in the evaporation sequence.

3.1.3 Assembly and performance

The original single-chamber vacuum system, developed for the early proof-of-principle

experiments in our group [26–28], allowed us to cool atoms in a magneto-optical

trap [35]. However, the system used vapour sources of Rb in its natural isotope

mixture, and the measured lifetimes in a magnetic trap did not exceed 3.5 s. It was

thus decided to rebuild the system, with particular care given to cleaning, baking

and eliminating potential sources of leaks and contaminations.

Figure 3.1: Single-chamber vacuum system: 1 - turbo pump port, 2 - valve, 3 - ion

pump, 4 - 87Rb dispensers, 5 - viewport, 6 - glass cell. We also show the magnetic

coils for creating: 7 - quadrupole field, 8 - bias field, 9 - guide field, 10 - RF field. All

coils except 9 and 10 are paired (only one coil per pair is shown).

The layout of the vacuum system is shown in Fig. 3.1. The system is constructed
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3.1. THE VACUUM SYSTEM

from standard vacuum components, with the exception of a pyrex cell by Triad

Technology [36] which allows optical access via two 50 mm (top and bottom), seven

25 mm anti-reflection-coated windows and the 25 mm vacuum tube. The system

uses standard CF flanges with copper gaskets. In day-to-day operation, the vacuum

is maintained by a single 45 l/s ion pump (Oerlikon IZ50 [37]). Additional high-

volume pumps (a turbo pump backed by a scroll pump), used during the bake-out

only, are separated by an UHV all-metal angle valve (Series 540, DN40 by VAT

Vacuum [38]). For the atomic sources, we installed 98% enriched 87Rb atomic vapour

sources (AS-3-Rb87(98%)-50-V from Alvatec [39]).

All components were cleaned in several stages:

1. mechanical cleaning with a scouring pad (steel parts only)

2. ultrasonic cleaning in an acetone bath (steel parts only)

3. rinsing with isopropanol

4. rinsing with water

5. rinsing with methanol

After assembly, the system was baked at 200 ◦C for one week. The temperature

gradients across the system, as well as the heating and cooling rates, were monitored

using multiple thermocouples and held within the manufacturer specified limits for

the respective components.

Pure 87Rb is released into the system by applying a heating current to the atomic

vapour source. Initially, the walls of the vacuum system adsorb most of the atoms,

making it impossible to maintain a high enough pressure in the MOT region. Once

the surfaces saturate, the atoms are predominantly removed by the ion pump, and

a near-constant pressure can be maintained by activating the 87Rb sources daily1

to match the average loss rate. The released quantity is controlled by the duration

and magnitude of the applied current.

We achieved magnetic trap lifetimes of over 20 s, corresponding to a background

pressure of ∼ 2 × 10−11 mbar. Under typical experimental conditions, we increase

the background pressure to improve the MOT loading, reducing τbg to about 10 s.

1The flow rates in our system are on the order of 0.1 h−1, making more frequent adjustments

unnecessary
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3.2. MAGNETIC FIELD COILS

3.2 Magnetic field coils

The magnetic quadrupole field for both the MOT and the magnetic trap is created

by an anti-Helmholtz pair of 16-turn water-cooled coils wound from 4 mm copper

tubing (“7” in Fig. 3.1). These create an axial gradient of B′ = 400 G/cm when

carrying 200 A.

The quantisation axis for optical pumping is provided by a magnetic field along

the imaging axis. We use a low-inductance planar 10 turn coil wound from 5 mm

copper wire (“9” in Fig. 3.1), providing a field of 5 G at the atoms.

Gravity compensation during long-time-of-flight (ToF) measurements is achieved

by combining a quadrupole field (created by the MOT coils) with a homogeneous

vertical bias field. Residual potential curvature is minimized by a high bias field

strength. We use two 50-turn coils in a Helmholtz configuration (“8” in Fig. 3.1),

providing a bias field of 70 G when run at 10 A.

A radio-frequency (RF) field for forced evaporative cooling is created by a three-

turn coil mounted against the top viewport of the cell. For transitions between

neighbouring mF states separated by up to 15 MHz, we achieve Rabi frequencies

above 20 kHz using 600 mW of RF power.

3.3 Laser system for BEC experiments

3.3.1 Atomic level structure of 87Rb

Alkali atoms have long been favoured for atomic physics experiments due to their

simple and well-understood electronic level structure. Since they only possess one

electron in the outermost shell, their excitations at low energies are described ex-

tremely well by the single active electron approximation. Due to LS-coupling [41],
87Rb exhibits a fine-structure doublet, comprising the D1 line (52S1/2 → 52P1/2)

at 795 nm and the D2 line (52S1/2 → 52P3/2) at 780 nm [40]. These are well sepa-

rated, and in our experiments we only use the D2 line. The total electron angular

momentum J = L + S further couples to the nuclear angular momentum I = 3/2,

leading to the hyperfine splitting of the ground state into the F = 1 and F = 2

states. The D2 excited states is split into the F ′ = 0, 1, 2, 3 hyperfine states. The

resulting level structure is shown in Fig. 3.2. The transition between stretched

states F = 2 → F ′ = 3 provides an essentially closed two-level system, which we

can utilize for laser cooling and trapping. Still, spontaneous decay into the F = 1
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Figure 3.2: 87Rb D2 line structure (reproduced from [40], showing laser frequencies,

transitions used for locking and AOM-induced shifts (see text for details).

ground state is possible via higher-order transitions, and any atom in this state is

permanently lost from the cooling process. To counteract population growth in this

dark state, a second laser beam (the repump beam) is used to pump atoms from the

F = 1 to the F ′ = 2 (or any other excited) state. These atoms can then return to

the cooling cycle via spontaneous decay.

Besides laser cooling, we also use resonant light to pump the atoms into the

magnetically trappable Zeeman states via the F = 2,mF → F ′ = 2,mF ′ = mF + 1

transition, as well as to implement absorption imaging on the F = 2 → F ′ = 3

line. This means our laser system must produce four different laser frequencies,

each stable to a few 100s kHz while tunable over many MHz, as summarized in

Table 3.1.
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3.3. LASER SYSTEM FOR BEC EXPERIMENTS

Table 3.1: Laser frequencies for the 87Rb BEC experiment. Note that pumping and

imaging detunings refer to Zeeman-shifted lines.

beam transition detuning ∆ (MHz ) power (mW)

cooling F = 2→ F ′ = 3 -15..-70 ∼ 100

imaging F = 2→ F ′ = 3 0 ∼ 100

pumping F = 2→ F ′ = 2 0 ∼ 10

repump F = 1→ F ′ = 3 0 ∼ 10

3.3.2 Laser system for cooling and trapping

All the required frequencies are derived from external-cavity diode lasers (ECDLs)

[42–47]. These offer a good balance of stability, cost, linewidth, and tunability.

Many designs are available, and we have experimented with several home-built as

well as commercial products. The operating principles, design and performance of

ECDLs are described in Appendix A. We eventually settled for a commercial model

(DLpro from Toptica [48]). The necessary stability is achieved by locking each

ECDL to an atomic line of 87Rb using saturation absorption spectroscopy [49]. We

describe the locking technique in detail in Appendix B; here, it suffices to say that

the technique allows us to stabilize the laser frequency to that of any of the dipole-

allowed transitions within the D2 line, but also to the so-called cross-over frequencies.

The cross-over frequency is the mean of the frequencies of two transitions sharing

the same ground state. Stabilizing an ECDL to a cross-over peak is often easier

due to a stronger spectroscopic feature (see Appendix B for details). Acousto-optic

modulators (AOMs) can be used to change a laser frequency by up to a few 100 MHz,

allowing us to derive frequencies within this range of the locking frequency. However,

using AOMs to bridge the hyperfine splitting of the 52S1/2 ground state (6.8 GHz)

requires complicated multi-pass setups that suffer from power losses. We therefore

use two separate laser sources: one for repump and and one for cooling, imaging

and optical pumping.

The locking and AOM configuration we use is shown in Fig. 3.2. The red arrows

indicate ECDL frequencies, the black arrows indicate AOM-induced shifts, and the

blue arrows indicate the reference frequency used for locking. The dashed blue

lines indicate cross-over frequencies. The optical layout implementing this scheme

is shown in Fig. 3.3.

The part of cooling light used for spectroscopy is frequency-shifted using a
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3.3. LASER SYSTEM FOR BEC EXPERIMENTS

double-pass AOM. The AOM is placed between two focusing lenses, such that

the minus-first order is always retroreflected back through the AOM, experienc-

ing the same negative frequency shift (∼ 105 MHz) twice. The laser is locked to the

F = 2→ F ′ = (2, 3) cross-over peak, meaning that the laser frequency in the main

output is ca. 210 MHz higher than the cross-over frequency. The double-pass AOM

remains aligned for any frequency shift and can thus be used for easy frequency tun-

ing. Up to 50 mW of the available output power are used to seed a tapered amplifier

(BoosTA from Toptica [48]), providing up to 1.5 W of output power. Imaging and

pump beams are derived from the amplifier’s output using a beam splitter and two

AOMs (see Fig. 3.2) and recombined using a polarizing beam splitter. A final AOM

after the tapered amplifier is used to reach the cooling frequency.

Each of the output beams passes through a shutter. This serves several purposes:

it enables us to keep the AOM at operating temperature while the beam is shut,

thus improving power stability, and eliminates any light diffracted due to stray radio-

frequency signals from the AOM driver. AOMs can still be used for precise timing

and allow a much faster switching time compared to mechanical shutters.
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3.3.3 Fiber optics and beam delivery

Polarization-maintaining single-mode optical fibers (PM630-HP with APC couplers

from Thorlabs [50]) are used to guide beams to the BEC setup. The cooling and

repump beams are delivered to the eight-way fiber port cluster shown in Fig. 3.3

and Fig. 3.4. This is used to combine cooling and repump light and split it 6-way for

the MOT beams. The fiber coupling efficiency is determined by the overlap between

the free-space laser mode and the eigenmode of the fiber. Assuming the free-space

beam is collimated and the fiber tip is exactly in focus of the collimation lens, the

maximum efficiency achievable when coupling an elliptic Gaussian beam with waists

wx and wy into a fiber with a mode field diameter (MFD) of 2wf is

C =
4w2

fwxwy

(w2
x + w2

f )(w
2
y + w2

f )
, (3.11)

with a maximum at wf =
√
wxwy. One can see that the maximum coupling efficiency

Cmax = 4wxwy/(wx +wy)
2 depends weakly on the beam ellipticity, only dropping to

89% for a 2:1 beam. Beam shaping is therefore secondary, as long as we choose the

appropriate lens and collimate the beams well. We achieved good results using an

aspheric lens mounted on a micrometre translation stage for precise collimation, and

two steering mirrors providing decoupled degrees of freedom for spatial alignment.

In practice, we achieve a free-space-to-fiber coupling efficiency of at least 45% at

every stage. About 20% of the available cooling light power is therefore delivered

to the MOT.

in 1
cooling

in 2
repump

out 1

out 2out 3

out 4

out 5

out 6

Figure 3.4: Fiber port cluster used for beam splitting

Similarly, imaging and pump beams are coupled into polarization-maintaining
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fibers and delivered to the MOT setup. Fig. 3.5 shows the arrangement of MOT,

imaging and pumping beams relative to the vacuum system.
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Figure 3.5: Optical layout of the single chamber system, showing four of the six

MOT beams (1-4), the optical path for the imaging and pump beams (left to right)

and the ODT beam (top to bottom).

The MOT beams, as well as the pump and imaging beams, are collimated to the

maximum size permitted by the science cell’s 1” windows, simplifying alignment of

the MOT. All beams are circularly polarized using quarter-wave plates. The choice

of polarizations is explained below.

3.3.4 Dipole trap beam

Figure 3.5 also shows the optical-dipole-trap (ODT) beam used for the hybrid trap.

It is derived from a 20 W ytterbium fiber laser (YLR-20-LP from IPG Photonics).

After passing through an AOM, the beam is focused by a concave-convex pair of

lenses, allowing the adjustment of both waist size and position. We typically use a

beam waist of 65µm and a maximum power of 5 W at the atoms. Higher powers
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lead to excessive atom losses, which can be attributed to two-photon transitions [51];

these transitions are caused by the large linewidth of the trapping laser (1.8 nm in

our case). The focal point is positioned between one and two beam waists below the

zero of the magnetic quadrupole field. The beam power is controlled in the range

0.01−5 W using a feedback loop consisting of a photodiode, a proportional-integral-

derivative (PID) controller, and the AOM. Throughout this range, we achieve an

root-mean-square (rms) power noise below 1 mW over a bandwidth of 1 kHz.

3.3.5 Computer control

The experiment is controlled using a system of PXI-compatible output boards from

National Instruments [52]. The current system consists of a PXIe-1082 chassis hold-

ing two PXI-6536 digital output cards, and a PXI-6713 and PXI-6733 analog output

cards. Each digital card provides 32 TTL-compatible channels, and each analog

card provides 8 outputs. The digital channels are individually isolated using op-

tocouplers. The high coil current can be switched using an IGBT driver, and its

strength is controlled via an analog input of the power supply. Laser beams can be

switched and detuned using digital and analogue signals, respectively. The outputs

are programmed using Cicero software by Aviv Keshet using NI DAQmx drivers.

All outputs are synchronized by distributing a common clock signal between the

PXI cards. One of the digital outputs is used to provide trigger signals for the

imaging camera. Images recorded by the CCD camera are read out and processed

using a LabView program written by Tobias Schmidutz, and further image analysis

is explained subsequently.

3.4 Magneto-optical trapping and laser cooling

3.4.1 Theoretical foundations

The principle of magneto-optical trapping is to combine laser cooling by six pairwise

counter-propagating red-detuned beams with a quadrupole field to provide confine-

ment in both momentum space and real space [41,53]. Consider the beam and field

configuration shown in Fig. 3.6 (a) below.

We will restrict our discussion to a model atom having a ground state with total

angular momentum F = 0 and an excited state with F = 1. In an external field,

the upper level will thus be Zeeman-split into the mF = −1, 0,+1 states, as shown
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Figure 3.6: Magneto-optical trapping: (a) field orientation and corresponding beam

polarizations (y beams not shown); (b) operating principle

in Fig. 3.6 (b). The combination of the fields and beam polarizations chosen ensures

that the left-hand circularly polarized (LHCP) beam propagating in the positive z

direction drives the |0, 0〉 → |1, 1〉 (σ+) transition, which is closer to resonance for

z < 0, where B points in the negative z direction, and vice versa. The cooling and

confinement is easily seen by considering the time-averaged force acting on the atom

due to each of the two counter-propagating beams along z [53]:

F± = ±~kΓ

2

S

1 + S + (2δ±/Γ)2
, (3.12)

where k is the wavenumber, Γ is the natural linewidth of the transition, S = I/Isat

is the ratio of beam intensity I to saturation intensity Isat = 2π2

3
~Γc
λ3

, and δ is the

effective detuning as seen by the atom. The latter is affected by three factors: the

detuning of the laser δ0, the Doppler shift due to the atom’s velocity ∓kv, and the

Zeeman shift due to the quadrupole field ∓gFµBB′z/~ = ∓αz. The resultant force

is

F = F+ + F− (3.13)

=
~kΓS

2

[
1

1 + S +
(
2 δ0−kv−αz

Γ

)2 −
1

1 + S +
(
2 δ0+kv+αz

Γ

)2

]
(3.14)

≈ −(kv + αz)
8~kS(−δ0)

γ
[
1 + S +

(
2δ0
Γ

)2
]2 . (3.15)

In 3.15 we assumed kv � |δ0|, αz � |δ0|. This shows that the force is approximately

linear in v and z, and will provide both confinement and cooling for red (negative)

detuning. Cooling is achieved by damping the motion of individual atoms. More

generally, the cooling region (MOT volume) will be limited to αz . |δ0|, and the
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maximum initial velocity (and thus temperature) of atoms that can be cooled will

be limited to kv . |δ0|.

3.4.2 Doppler limit and sub-Doppler cooling

The temperature achievable in a magneto-optical trap is limited to what is known

as the Doppler limit, TD. The limit arises due to the stochastic nature of photon

re-emission by the atoms, resulting in heating [54]. The cooling effect is balanced

by stochastic heating at a temperature

kBTD =
~Γ

2
. (3.16)

For 87Rb, Γ = 2π × 6.1 MHz [40] and TD ≈ 150µK. However, it has been shown

that multi-level atoms moving in a light field with spatially varying polarization can

be cooled to temperatures below the Doppler limit [53, 55–57]. In the counterprop-

agating beam configuration described above (σ+ − σ−), the atomic cloud will reach

lower temperatures if the magnetic field gradient is turned off and the laser detuning

is increased further. This cooling stage at the end of MOT loading is referred to as

optical molasses [58]. The ultimate cooling limit withing the semiclassical theory of

atom-light interaction (that is, treating the external degrees of freedom of the atom,

as well as light, classically) is the recoil temperature TR given by [56]

kBTR =
~2k2

2m
. (3.17)

For 87Rb, the recoil limit is TR ≈ 0.2µK - 3 orders of magnitude below the Doppler

limit, leaving significant scope for optimizing the starting conditions before trans-

ferring atoms from the MOT into a purely magnetic trap. It is worth noting that

temperatures below TR have also been achieved [59], and can be explained within

the quantum atom-light model.

3.4.3 Experimental implementation

For the MOT we use an axial field gradient of B′ = 13 G/cm and a cooling-light

detuning of −25 MHz. Typically, we load a MOT of 109 atoms in 15 s, but 5 s is often

sufficient to produce BECs with > 105 atoms. MOT atom numbers can be deduced

using either absorption imaging or the intensity of fluorescence light collected on

a photodiode. The latter is less accurate, with the signal deviating from a simple

linear scaling for optically dense clouds. However, it is our preferred method as it can
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be used for non-destructive in-sequence diagnostics, following the initial calibration

using absorption imaging.

Following the initial loading stage, we compress the MOT by increasing B′ to

64 G/cm for 20 ms, and then detune the cooling light to −68 MHz for 1 ms (CMOT,

[60]). We found that these steps reduce the temperature and improve transfer into

the magnetic trap. These steps are followed by 2 ms of optical molasses, during

which the magnetic field is switched off and the cooling-light detuning of −68 MHz

is maintained. This cools the cloud to ≈ 15µK - well below the Doppler limit.

Lower temperatures are possible, albeit at the expense of atom number.

3.5 Evaporative cooling

3.5.1 Theoretical basics

To overcome the fundamental limitations of optical cooling, a different mechanism

is required. A commonly used method that leads to further reduction in T while

increasing the cloud’s phase-space density is evaporative cooling. The idea behind

evaporative cooling is to allow the atoms carrying energy well above the thermal

average to escape - which after rethermalization leads to a decrease in the temper-

ature. This process can be repeated by gradually decreasing the trap depth. An

analytical model proposed in [61] allows us to describe the evolution of all relevant

quantities during evaporation by simple power laws. If we assume that atoms with

energies above ηkBT are allowed to escape from a trap with characteristic power α2,

we can show that these carry away γ = η
α+3
−1 times the average thermal energy per

atom. We then find that the relevant quantities scale as N q during the evaporative

cooling, with characteristic exponents q shown in Table 3.2 (note that [61] defines

parameter ξ ≡ α + 3/2).

Successful evaporation towards BEC requires an increase in the phase-space den-

sity ρ as N decreases, i.e. qρ < 0. Additionally, continuing evaporation requires a

sufficiently fast thermalization rate, which is proportional to the collision rate κ.

Runaway evaporation is possible if κ increases, requiring qκ < 0. The range of η

where efficient evaporation is possible depends on the trap shape. The conditions

for runaway evaporation in different trapping potentials are shown in Table 3.3.

We compare linear, harmonic and uniform trapping potentials (s = 1, 2 and ∞,

respectively).

2As defined previously, α = 3/2 + 3/s for an rs potential

39



3.5. EVAPORATIVE COOLING

Table 3.2: Scaling exponents during evaporative cooling; reproduced from [61]

variable symbol exponent q

atom number N 1

temperature T γ

volume V γ(α− 3/2)

density n 1− γ(α− 3/2)

p.s.d. ρ = nλ3
T 1− γα

collision rate κ = nσv̄ 1− γ(α− 2)

It can be seen that traps with higher s (and thus steeper walls) can gener-

ally achieve gains in phase space density at lower η, meaning faster experimental

sequences. Large η will require slow evaporation, which must be balanced with

atomic losses due to background collisions and thus finite in-trap lifetime. However,

runaway evaporation is only possible for s < 6, excluding especially the case of the

uniform trap3. Further, in Table 3.3 we show the characteristic exponents in dif-

ferent traps at fixed η = 10. It can be seen that, while ρ increases fastest in traps

with larger s, κ (and n) shows the opposite trend. This in part justifies the use of a

linear trap, i.e. a magnetic quadrupole trap, in the early stages of the evaporation

sequence, where density is low.

Having discussed the basics, we now consider three possible implementations of

traps suitable for evaporative cooling, before presenting the experimental details.

3.5.2 Magnetic trap with radio-frequecncy (rf) evaporation

A magnetic quadrupole field B = B′(x,−y/2,−z/2)T provides a convenient linear

trap for atoms with a permanent magnetic moment µB. Consider the Zeeman energy

V = −µB · B = gFµBmFB, where F is the total angular momentum quantum

number, mF - its projection along the direction of B, and gF is the corresponding

Landé g-factor. This potential will confine states with gFmF > 0. Considering

hyperfine sub-levels of the 2S1/2 state of 87Rb, we find that the trappable states are

F = 2, mF = +1,+2 and F = 1, mF = −1. Removal of the most energetic atoms

from the magnetic trap is achieved by selectively transferring these to untrapped

3Evaporation in a uniform trap will be discussed in Chapter 4.
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Table 3.3: Comparison of evaporation conditions in common trap types.

Trap type: linear harmonic uniform

α 9/2 3 3/2

p.s.d. gain (qρ < 0) for η > 5.5 η > 4 η > 2.5

runaway evaporation (qκ < 0) for η > 6.3 η > 6 never

Typical exponents for η = 10:

N 1 1 1

T 1.2 2.3 5.7

V 3.7 3.5 0

n -2.7 -2.5 1

ρ -4.5 -6 -7.5

κ -2.1 -1.3 3.8

states. The process is described in more detail in [62]. The underlying principle is

as follows: the Zeeman splitting of the hyperfine states increases with B, and thus

with distance from the centre of the trap, x. Choosing a radio frequency (rf) such

that hfrf = µBB(x) for some x will cause transitions to untrapped states in atoms

energetic enough to reach the corresponding region of the trap, i.e. with energies

E > E0 = gFµBmFB(x). An atom starting in the F = 2, mF = 2 state will be

successively transferred to the states with the same F and mF = 1, mF = 0, etc. It

can be seen that E0/(kBT ) will define the evaporation parameter γ. The value of

γ, which in turn determines the evaporation rate, can thus be adjusted by changing

fRF.

The field direction is not constant inside the trap, and perfect trapping requires

that µB follows B adiabatically. The Larmor precession frequency must therefore

be much higher than the trapping frequency. For sufficiently strong fields, this is the

case everywhere except at the trap centre. The associated losses (Majorana spin-flip

transitions) limit the cooling in magnetic quadrupole traps to a few µK. Magnetic

traps without a zero have been used to avoid these Majorana losses [6, 7, 63]. An

alternative is to use an optical trap [64].
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3.5.3 Optical dipole trap (ODT)

Optical dipole forces of a red-detuned laser beam can be used to confine the atoms

in the high-field region. Due to the AC Stark shift of the ground state energy, the

atom experiences a potential of the form [41]

Uod(r) =
~Γ

8

Γ

δ

I(r)

Isat

, (3.18)

where I(r) is the intensity of the confining light field. For negative (red) detuning,

atoms are thus attracted to regions of higher intensity. Multiple configurations with

both red and blue detuned beams have been studied [65].

A single Gaussian beam propagating along z with the waist at focus w0 creates

a potential of the form

U(r, z) = U0

(
w0

w(z)

)2

exp

(
−2r2

w2(z)

)
, (3.19)

w(z) = w0

√
1 + (z/zR)2, (3.20)

zR = πw2
0/λ. (3.21)

The beam waist w0 determines the radial confinement, while the the Rayleigh length

zR determines the axial confinement. The potential near (r, z) = (0, 0) is approxi-

mately harmonic, with trapping frequencies given by ω2
r = 4U0/w

2
0 and ω2

z = 2U0/z
2
R.

Evaporation can be forced by reducing the trap depth U0. However, in doing so we

also reduce the trapping frequencies and thus increase the effective volume - the

resulting correction to the scalings presented in Table 3.2 is effectively descibed by

substituting α → α − 3/2. Thus, our harmonic trap will only perform as well as

a uniform one, with the effective volume remaining constant with temperature. As

discussed above, this will rule out efficient run-away evaporation. While crossing

two or more beams is possible to improve confinement, the unfavourable scaling

remains as long as the evaporation is forced by a simple scaling of the overall optical

power.

Various techniques have been used to improve evaporation efficiency in optical

traps [64,66–70]. A simple method combining a single-beam ODT with a magnetic

quadrupole field to achieve efficient evaporations was proposed in [29]. It combines

the benefits of optical and magnetic traps, and allows efficient evaporation to de-

generacy. This hybrid trapping technique is described next.
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3.5.4 Magneto-optical hybrid trap

The hybrid trap uses a single-beam ODT to confine the cloud radially. The weak

axial confinement is enhanced by adding a magnetic quadrupole field, with the

magnetic zero displaced vertically from the ODT axis. In our system the parameters

are chosen as follows:

� quadrupole field gradient B′ = 14.8 ± 0.1 G/cm (just below the gravity-

compensating value of 15.3 G/cm)

� ODT beam waist w0 = 65± 5µm

� vertical distance from the magnetic zero to the ODT axis z0 = −60± 5µm

The resulting geometry improves the scaling of the average trapping frequency with

trap depth, as discussed in [29,70,71]. To emphasize this point, we plot the effective

trapping frequency f̄ = (fxfyfz)
1/3 versus trap depth U0 in Fig. 3.7. Both are

obtained from a numerical model of our hybrid potential. The range shown in
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Figure 3.7: Effective trapping frequency versus trap depth in a hybrid trap. Solid

red line: our hybrid trap; dashed blue line: a purely optical trap with equivalent

starting conditions, f̄ ∝ U1/2
0 ; dashed red line: f̄ ∝ U1/3

0 (see text).

Fig. 3.7 (a) corresponds to optical power of the ODT beam of 0− 5 W, while panel

(b) shows the detail for small powers of up to 60 mW (corresponding to trap depth

below 1µK). We also show the evolution of the trapping frequency in a purely

optical trap with equivalent starting conditions. As explained above, each of the

three frequencies, and thus f̄ , scale as U
1/2
0 in a pure ODT. In the hybrid trap, the

axial trapping frequency is determined by the quadrupole field, and thus remains

nearly constant. This results in a scaling of the form f̄ ∝ U
1/3
0 (dashed red line). For
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large depths, this agrees well with the calculated frequency. The evaporation will

thus be described by α = 2, corresponding to s = 6 - the borderline case for runaway

evaporation. At low ODT powers the scaling improves further - because we choose a

magnetic field gradient that does not fully compensate gravity, the trap depth goes

to 0 while the trapping frequencies remain non-zero, as seen in Fig. 3.7 (b). The

behaviour thus approaches that of a (constant-f̄) harmonic trap, making runaway

evaporation possible. The performance of a hybrid trap is thus far superior to that

of a gravity-compensated single-beam optical trap4.

3.5.5 Experimental sequence

Following molasses, the atoms are optically pumped into the |F,mF 〉 = |2, 2〉 hy-

perfine ground state, using a combination of resonant |F = 2〉 → |F ′ = 2〉 σ+ light

and repump light. We pump > 80% of the atoms into the |2, 2〉 state in 40µs, while

heating the cloud slightly, to 40µK.

The atoms are then captured in a magnetic potential by suddenly turning on the

quadrupole field with B′ = 64 G/cm5 and then ramping B′ to 80 G/cm over 200 ms.

Finally, the trap is further compressed by raising B′ to 200 G/cm over 500 ms.

From this point on, the evaporative cooling to condensation can be divided into

three stages: (I) RF evaporation, (II) transfer into the hybrid trap, and (III) ODT

evaporation.

Fig. 3.8 summarizes the evolution of the relevant experimental parameters during

the evaporation sequence, while Fig. 3.9 displays the evolution of the atom number

N , the temperature T , and the calculated phase-space density ρ.

N and T are measured using time-of-flight (ToF) absorption imaging (see 3.6)

and ρ is calculated from a semi-classical model [29], using the analytic expression

for the hybrid trapping potential. We verified the parameters of the model (such as

beam waist) by measuring trapping frequencies and comparing them with theoretical

predictions. We omit the calculated values of ρ in stage II, where they are unreliable

because the trapping potential varies slowly over large volumes.

4A single-beam ODT performs better without gravity compensation, but it still lacks the axial

confinement of our hybrid trap.
5By matching the gradient of the CMOT, we ensure that the captured cloud is close to the

equilibrium density distribution of the new trapping potential. Any “mode mismatch” leads to

heating as the cloud relaxes to its new equilibrium shape.
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Figure 3.8: Evaporation sequence in the hybrid trap. We show the evolution of (top

to bottom) the magnetic field gradient B′, RF frequency f , and ODT power P . The

sequence has three stages: (I) RF evaporation, (II) transfer into the hybrid trap, and

(III) ODT evaporation.

RF Evaporation

During the initial evaporation stage in the compressed trap (I in Figs. 3.8 and

3.9), we ramp the RF frequency linearly from 15 MHz to 5 MHz in 2 s. We achieve

a 30-fold increase in the peak phase space density, with an evaporation efficiency

qρ = d[ln ρ]/d[lnN ] = −2.1. According to 3.5.1, this corresponds to η = 7.6.

At the end of this stage the cloud typically contains N = 50 × 106 atoms at

T = 90µK.

Loading of the Hybrid Trap

In stage II the magnetic field gradient is decompressed to just below the gravity-

compensating value, B′g = mg/µB = 15.3 G/cm, where m is the atom mass, g is the

gravitational acceleration and µB is the Bohr magneton. From this point on, the

atoms are supported against gravity by optical forces only, while the confinement

along the ODT axis is dominated by the magnetic forces [29]. Note that the ODT

beam is on from the beginning of the magnetic trapping (see Fig. 3.8), but initially

does not have a dominant role.

We decompress B′ to 80 G/cm over 100 ms while keeping the RF frequency con-

stant, then decompress further to B′1 = 40 G/cm while sweeping the RF frequency

linearly to 2.5 MHz in 0.5 s; this provides a good gain in phase-space density de-
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Figure 3.9: BEC production. We plot the temperature T (blue open circles, left axis)

and phase-space density D (red crosses, right axis) versus atom number N (bottom)

and time t (top) throughout the cooling sequence. See Fig. 3.8 and text for details

of stages I - III. Also shown are an absorption image of a partially condensed cloud

after 50 ms of time-of-flight expansion [optical density varies between 0 (blue) and 3

(red)] and its integrated profile. Fits to the thermal and condensed components are

indicated.

spite the weak magnetic confinement. Finally, the magnetic field is decompressed

from B′1 to B′2 = 14.8 G/cm. In this step we sweep the field gradient according to

B′(t) = B′1 × (1 + t/τ)−1, where τ = t2B
′
2/(B

′
1 − B′2) and the sweep duration is

t2 = 800 ms. This changes the RF-limited trap depth approximately linearly with

time, with the approximation being exact in the case of no ODT and B′2 = B′g.

As the magnetic trap is decompressed, the cloud shape is distorted, making

thermometry less accurate during this stage. Further, computing the peak phase-

space density relies on integrating over all trapping volume, but convergence is very

slow for gently sloping potential in the downwards direction below the magnetic

zero. Thus, temperatures shown in Fig. 3.9 should be treated with caution, and ρ

is not shown for this stage.

At the end of the loading stage, we typically have 20× 106 atoms at 30µK.
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Optical Evaporation

For B′ < B′g, evaporation is no longer driven by the RF field. Instead, the trap depth

is limited by the potential at the saddle point vertically below the magnetic-field

zero [70]. Evaporation can be forced by lowering the ODT power P , albeit at the

cost of reducing the trapping frequencies. However, our hybrid trap has 3 times the

trapping frequency of an optical trap with the same starting depth and frequencies

when approaching condensation. Moreover, unlike in a purely optical trap, the

effective trapping frequency remains positive (in our case, near 30 Hz) as the trap

depth approaches zero, allowing efficient evaporation to very low temperatures.

We ramp P exponentially to its final value, Pend, with a time constant of 1.25 s

and total ramp duration of 7 s (both parameters have been optimized empirically).

We achieve an evaporation efficiency of qρ = −3.4, leading to condensation at Pend =

0.16 W. Assuming the trap is harmonic with (nearly) constant frequencies in the

late evaporation stages, we find η = 7.4 (see 3.5.1).

At the critical point, N ≈ 106 and T ≈ 250 nK. At this point, the trapping

frequency is about 30 Hz along the ODT axis and about 90 Hz radially.

Lowering the ODT power further results in quasi-pure6 condensates of > 3×105

atoms. The lifetime of the quasi-pure BEC is ∼ 3 s, consistent with the expected

3-body losses [72].

3.6 Imaging

All the thermodynamic properties of atomic clouds, i.e. the total atom number N ,

the condensate number N0, and the temperature T , were extracted by recording

and analyzing the density distribution of the atomic clouds, such as the one shown

in Fig. 3.9. In studying BECs prepared in a harmonic trap, we typically record

the optical density (OD) of a cloud after long time of flight (ToF) using absorption

imaging [73]. More generally, we need a technique that would allow us to record

clouds in situ as well as after variable ToF, meaning a wide range of ODs (typically

0-30). This can be achieved using high-intensity imaging [74], as explained below,

and is a necessary prerequisite for studying BECs in box-like potentials.

As shown below, optical density can be interpreted as the line density of the

atomic cloud. While N can be obtained from these by simple integration, extracting

N0 and T relies on an analytic model of the cloud (either in situ or in ToF). Below,

6we can only reliably detect thermal fractions down to about 30%
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we review the well-known results for harmonically trapped clouds [73]. These will

form the basis for developing corresponding results for clouds in power-law and

uniform potentials in subsequent chapters.

To conclude this section, we will briefly review the practical side of image anal-

ysis. Again, we will built on these techniques in subsequent chapters.

3.6.1 Absorption imaging

Absorption of light with intensity I by the atomic cloud of density n can be described

by the general Beer’s law
dI

dz
= −nσ(I)I, (3.22)

with absorption cross-section σ(I). For resonant light, we can write [74]

σ =
σ0

cσ

1

1 + I/Isat

. (3.23)

Here, σ0 is the resonant absorption cross-section, cσ accounts for any deviations

from the ideal resonant cross-section due to polarization imperfections, and Isat is

the (effective) saturation intensity. In our experiment, we use circularly polarized

light, and σ0 = 3λ2/(2π).

In the low-intensity limit (I � Isat), we find that the column density ñ can be

calculated from the light intensity before and after the atoms (Ii and If, respectively)

via

ñ =

∫
n(z)dz = σ−1

0 ×OD = σ−1
0

[
−cσ ln

(
If

Ii

)]
. (3.24)

Experimentally, the two intensities are obtained by recording the imaging beam

on a CCD or CMOS sensor with and without the atoms (in our setup, we use a

PCO Pixelfly CCD camera [75]). The maximum OD that can be recorded is limited

by the signal-to-noise ratio in the If. Increasing the intensity Ii to counter (and

decreasing the exposure time to keep the CCD from saturating) takes us into the

mid- or high-intensity regime.

The choice of imaging intensity is dictated by the trade-off between the signal-to-

noise ratio and the available dynamic range (and level quantization) of the detector.

If we choose the intensity too high, the signal will be generally well above the noise

floor, but the relative variations across the image will be small and eventually the

error will be dominated by signal quantization. In practice, this means that for best

results the (raw) optical density must be on the order of 1-3.
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3.6.2 High-intensity imaging

At high intensities, the absorption cross-section can no longer be treated as constant.

Using (3.23) to integrate (3.22), we find that (3.24) has to be modified to include a

linear term [74]:

ñ = σ−1
0

[
−cσ ln

(
If

Ii

)
+
Ii − If

Isat

]
. (3.25)

While measuring ODs in the low-intensity limit only requires ratios of measured

CCD counts, high-intensity imaging requires absolute calibration of the recorded

intensities. We do this by recording thermal clouds produced at the end of the

same experimental sequence with different intensities Ii. All images are processed

with different assumed values of Isat, and we choose the one that yields the smallest

variations in total atom number N =
∫∫

ñdxdy versus Ii. Finally, cσ is calibrated

by comparing N0 and Nth in partially condensed clouds with theoretical predictions,

as described in [76, 77]. We find typically find cσ = (1.7 ± 0.2), and we repeat the

calibration after any major change to the experiment. This cσ is typical of other

similar experiments [78, 79].

3.6.3 Condensate Density

Absorption imaging yields the column density ñ(x, y) =
∫
n(x, y, z)dz. Below, we

present a theoretical model for n and thus ñ. The parameters of the model are the

thermodynamic variables such as T , N0 and Nth. Having an analytic model allows

us to determine these parameters by least-square fitting of the model function to

our measured ñ. Below, we review the theoretical description for clouds trapped in

or released from a harmonic potential.

Trapped Gas

At temperatures 0 < T < Tc, the gas has two components: the condensate in

the ground state and the thermal cloud comprising atoms in the excited states.

Detecting the condensate experimentally requires a theoretical model for the spatial

density of each component.

The thermal component can be treated semi-classically [24] to obtain the density

profile

nth(r) =
1

λ3
T

g3/2

[
exp

(
µ− V (r

kBT

)]
, (3.26)

with the polylogarithm function gj(z) =
∑

i z
i/ij
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The density of the condensate part is directly proportional to |Ψ|2, where Ψ is the

many-body ground state wavefunction. For an ideal gas, this would be the Gaussian

ground state of the simple harmonic oscillator. However, even in dilute gases, this

is strongly affected by interactions. We only consider two-body scattering processes

described by the s-wave scattering length a. In the mean-field approximation, Ψ

obeys the Gross-Pitaevskii equation [23]

i~
∂Ψ

∂t
= − ~2

2m
∇2Ψ + V (r)Ψ + U0|Ψ|2Ψ (3.27)

with U0 = 4π~2a/m As discussed in [80], the kinetic energy term can be neglected

under conditions typical in atomic BEC experiments (Thomas-Fermi approxima-

tion), and (3.27) can be solved to yield

n0(r) = max

(
µ− V (r)

U0

, 0

)
. (3.28)

In the harmonic potential V = 1
2
m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2), the density profile is thus

parabolic and can be clearly distinguished from the thermal profile (3.26). Note

that both components will have the same aspect ratio in an anisotropic trapping

potential, the extent in a given direction being inversely proportional to the the

trapping frequency. In general, imaging the trapped gas in-situ will yield a bimodal

profile, and fitting the density distribution with a weighted sum of nth(r) and nc(r)

allows quantitative analysis of the condensate.

Free Expansion

While in-situ imaging provides a direct picture of the condensate in real space,

it is often convenient to study particle distributions in momentum space instead.

A distinguishing property of the condensate in an anisotropic trap is that, unlike

the thermal fraction, it is anisotropic in momentum space. Experimentally, this is

possible to observe in a time-of-flight (ToF) measurement, where the condensate is

allowed to expand freely for a fixed time before imaging. For large expansion times

and negligible interactions, this technique provides a direct image of the momentum

distribution.

Considering the time-dependence of density distributions above, it can be shown

that both n0 and nth expand self-similarly [73]: the functional form of n0 remains

parabolic due to interactions, and nth follows the g3/2 distribution above (for a more

detailed review, see [27, 28]). Keeping the essential functional form only, we can

50



3.6. IMAGING

write:

nth(x, y, z) ∝ g3/2

[
exp

(
µ

kBT
−
∑
i=x,y,z

x2
i

2R2
i (t)

)]
, (3.29)

n0(x, y, z) ∝ max

(
1−

∑
i=x,y,z

x2
i

a2
i (t)

, 0

)
. (3.30)

For a partially condensed sample, we can set µ = 0. Integrating (3.29) and (3.30)

along z, we find the column densities

ñth(x, y) ∝ g2

[
exp

(
−
∑
i=x,y

x2
i

2R2
i (t)

)]
, (3.31)

ñ0(x, y) ∝ max

(
1−

∑
i=x,y

x2
i

a2
i (t)

, 0

)3/2

. (3.32)

The thermal radii Ri, and thus T , as well as the condensed fraction, can be deter-

mined by least-square fitting of the measured ñ with a fitting function of the form

f(x, y) = Athñth(x, y) + A0ñ0(x, y). The fitting algorithm will only be numerically

stable if the measured distribution is bimodal, as shown in the inset of Fig. 3.9. This

is generally the case for thermal fractions above 50% and long ToF. If the condensed

fraction is small or ill-defined, we can often extract Nth and T reliably by excluding

the central region of the image and fitting the thermal wings only. This technique

can be used to determine a good starting point for the bimodal fit [28]. Further, it

becomes essential when analyzing uniform BECs: while we shall derive a functional

form analogous to (3.31) for fitting the thermal wings, no analytic form is known

for ñ0. Further, ñth peaks more steeply in the uniform trap case, meaning that the

bimodality of the distribution is not clearly visible like it is in the harmonic case.
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Chapter 4

Towards a Uniform BEC

Having created a Bose-Einstein condensate in a harmonic trap, our next goal was

to transfer it into a uniform potential. In this Chapter, we describe the necessary

steps. These include creating a suitable box potential, cancelling residual fields such

as gravity, and finally optimizing the experimental sequence to produce large BECs.

Further, we address the problem of detecting condensation in a uniform system,

as well as measuring thermodynamic properties of partially condensed clouds in a

uniform trap. We find that the experimental signature differs significantly from

the well-known case of a harmonic trap, making an accurate theoretical description

essential for further studies.

4.1 Adding the box potential

Most potentials used in atom trapping experiments can be described by simple power

laws. For example, we have described the linear quadrupole trap and the quadratic

optical dipole trap. Our ability to shape magnetic fields is somewhat limited: while

one can imagine a quadratic potential or, as in the case of a Helmholtz coil pair,

one with a leading term of order four, these generally offer very weak confinement,

limited by the size of current carrying components1. Optical fields, on the other

hand, can be engineered much more freely, with the achievable spatial resolution

only limited by the diffraction limit of the optics used. The resulting light field with

intensity I(r) will create a trapping potential U(r) ∝ I(r), as described in 3.5.3. By

reversing the sign of the detuning, δ, we can create attractive as well as repulsive

potentials. The main limitation of attractive (red-detuned) optical traps is their

1This approach is used in “BEC on a chip” systems, aided by the small size of (often printed)

components. In our case, the vacuum system imposes a minimum size of ∼ 10 cm on all coils
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4.1. ADDING THE BOX POTENTIAL

inherent heating [65]. Blue-detuned light, on the other hand, can be used to create

dark-field optical traps (see e.g. [65] and references therein), in which the atoms are

confined by repulsive walls in a region of low I, and thus experience little heating.

In this Section, we describe how these concepts were applied to create the first

ever box-like trap for ultra-cold atoms. At the same time, we consider the effect of

other external fields on the trapped atoms. These include the gravitational force,

which creates a linear potential along the vertical direction. We thus address ways

to cancel the gravitational potential, to make full use of our dark-field optical trap.

4.1.1 Dark optical trap

The prospects of creating arbitrary potential for ultra-cold atom experiments have

been studied extensively in [81, 82]. Using a spatial light modulator (SLM), it is

possible to imprint a phase pattern on a laser beam to create almost arbitrary

shapes in the desired plane perpendicular to the propagation direction. Shaping

light in three dimensions, on the other hand, is subject to constraints imposed

by the Helmholtz equation (and ultimately, Maxwell’s equations). However, many

novel trapping geometries can be explored by intersecting two or more appropriately

shaped beams. Our implementation is shown in Fig. 4.1. A single SLM is used to

create two spatially separate beams: one in the shape of a ring and another in the

shape of two sheets. The two beams are separated and guided to the vacuum cell,

where both are intersected at right angles. The details of the holographic methods

used to shape the beams can be found in [82]. The resulting dark-field region is

cylindrical in shape and is aligned to overlap with the harmonic hybrid trap. We

use off-resonant blue-detuned light, with a wavelength of 532 nm, produced by an

Excel solid state laser from Laser Quantum [83].

The performance of the trap can be gauged in two ways: first, by the effective

trap parameter α which determines how closely the thermodynamics of the trapped

gas resemble that of an ideal box system, and second, by the uniformity of the

in-trap BEC density.

To estimate the effective parameter α, we recall that the effective volume scales

as V ∝ T 3/2−α, or
d ln(V )

d ln(T )
= α− 3/2. (4.1)

The temperature-dependent volume can be determined from the analytic model for

the light intensity I(r), as well as from I(r) measured in a bench environment.

Alexander Gaunt found that the largest contribution to α comes from the tube
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Figure 4.1: Dark optical box trap (adapted from [82]). Top: experimental setup for

creating the walls of the box, showing distances and focal lengths in mm. Bottom

left: SLM phase pattern (phases from 0 to 2π are represented by colours from black

to white). Bottom center: tube and two sheet beams in the first focal plane, before

being separated by a half-mirror. Solid line shoes the mirror edge. Bottom right: tube

beam and sheet beams intersected at 90◦ in the second focal plane.

beam, with the effective power in the radial direction sr & 10 over a wide range of

T [82]. sr determines two of the three terms in (2), suggesting overall power s & 15

and thus 1.5 ≤ α ≤ 1.7.

To consider the uniformity of the condensed phase, we recall that the density

n is determined by the Thomas-Fermi approximation (under most experimental

conditions, see later),

n(r) =
µ− U(r)

γ
. (4.2)

We can easily calculate e.g. the standard deviation of the density from its mean 〈n〉
over the trapping volume (U(r) < µ). For the sake of argument, consider U(r) ∝ rs.

It is easy to show that the normalized root mean square deviation in density is

〈(n− 〈n〉)2〉1/2

〈n〉
=

√
3

2s+ 3
(4.3)
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where 〈· · · 〉 denotes averaging over the trap volume. For s = 2, this results in a 43%

variation in density, while in an r15 potential it would be near 9%. On the other

hand, speckle noise dominates U(r) over large portions of our trap, with noise levels

consistently below 1% [82]. Further, the flatness of n is fundamentally limited by the

healing length ξ, typically of the same order as the extent of the sloping potential

walls (few µm).

While the predicted quality of the dark optical trap look promising, the above

considerations suggest that ultimately the flatness requirements will be determined

by the exact origin of the experimental signatures used to probe it. Examples pre-

sented in subsequent Chapters include thermodynamic studies, Bragg spectroscopy

of the ground state as well as measurements of the mean field energy.

4.1.2 Gravity compensation

While our atoms may be confined in an excellent box-shaped trap, the potential

they experience is far from uniform until we take care of the gravitation potential.

A simple estimate shows that the gravitational potential, expressed in temperature

units, equals to
mg

kB

=
1µK

10µm
(4.4)

for 87Rb atoms. For a BEC of N0 = 105 atoms in a cylindrical trap with length

l = 30µm and radius r = 15µm, the chemical potential is µ = γn0 = 1.7 nK × kB.

Keeping the linear contribution to the trapping potential below, say, 0.1µ requires

cancelling gravity to better than 0.6× 10−4g. A common approach is to combine a

gravity-cancelling quadrupole field with a strong homogeneous bias field along the

vertical direction (x), resulting in a magnetic field of the form

B = B′


x

−y/2
−z/2

−B0


1

0

0

 . (4.5)

As described in 3.5.2, this creates a potential proportional to B = |B|. Expanding

to second order in x and r =
√
y2 + z2, we find

B = B0 −B′x+
1

2

B′2r2

4B0

. (4.6)

Thus, we can cancel the gravitational potential to 1st order by choosing B′ =

mg/µB = 15.3 G cm−1 and a large enough B0. The radial term in (4.6) corresponds
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to a harmonic potential with trapping frequency

ω2
r =

µBB
′2r2

4B0

. (4.7)

In practice, our coil arrangement is not perfectly aligned, which introduces a vertical

trapping frequency ωz. This frequency scales as B
1/2
0 - the inverse of (4.7). In our

experiments, we are therefore limited to B0 = 30 G, corresponding to a residual

potential of ωr = 2π × 1.6 Hz (as confirmed by measuring small center-of-mass

oscillations of the cloud). This corresponds to a residual potential of 0.1 nK near

the trap walls for a 30µm trap - similar to that due to a relative change of 0.3×10−4

in B′. At the same time, we are able to stabilize B′ to approximately 10−4 - we can

improve on that by post-selecting images based on the position of the cloud center

after long ToF in the more sensitive measurements.

4.2 Loading the BEC into the box

We have now described two major steps towards creating a uniform degenerate gas:

first, we have a source of ultra-cold atoms in a harmonic trap (Chapter 3), and

second, we have created a uniform box-like trapping potential. Next, we describe

loading the atoms into the box. We describe our experimental procedure, and con-

sider the evolution of the cloud as we transfer it between different trap types.

4.2.1 Experimental sequence

The typical transfer sequence is illustrated in Fig. 4.2. By ramping up the box trap

before ramping down the optical dipole trap, we can achieve efficient transfer. The

evolution of the trapping potential is kept slow to make the transfer as close to

adiabatic as possible. The change in the in situ density profile is clearly seen in the

high-intensity absorption images taken before and after the transfer. However, unlike

in a harmonically trapped cloud, in a uniform trap these images do not contain any

information on the temperature of degeneracy of the cloud - the density profile is

well fitted by a model assuming uniform density over the cylindric trapping region,

as shown in Fig. 4.2 (d). We first consider the theoretically expected evolution of

the cloud’s thermodynamic properties during the transfer, before discussing ways to

measure these for a uniform gas using time-of-flight imaging.
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Figure 4.2: Loading sequence of the box trap(adapted from [82]). Top: evolution

of the quadrupole gradient B′, bias field B, ODT power PODT and green laser power

Pgreen. We also show a schematic cross-section of cloud relative to the green trapping

beams just before (a) and after (b) the transfer. Below, we show absorption images of

the cloud at the respective times (c,d), together with integrated density profile along

two directions. Dashed lines represent best fits described in the text.

4.2.2 Effect of transfer on phase space density and conden-

sate fraction

Transferring either a thermal or a partially condensed cloud from the harmonic

hybrid trap into the uniform trap will affect the phase space density ρ in the former

case, and the condensate fraction N0/N in the latter. To estimate these effects, we

consider an adiabatic transfer - that is, one at constant entropy S. We neglect atom

losses (due to both mismatched trap size and evaporation) during the transfer.

Thermal clouds

First, we consider the limit T � Tc. Using results and notation from Chapter 2, we

can write the cloud’s entropy in the form

S

kBN
= (αi + 1)− ln ζ(αi)− ln ρi + ln ζ(3/2), (4.8)
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where αi is the characteristic parameter of the respective trap type, i.e. α1 = 3 and

α2 = 3/2 for a transfer from the harmonic to the uniform trap. From S = const we

can immediately deduce

ρ2

ρ1

=
ζ(α1)

ζ(α2)
eα2−α1 = 0.10. (4.9)

A 10-fold decrease in the phase space density (and an even bigger drop in the colli-

sion rate), combined with inefficient evaporation, suggests that the cloud should be

transferred into the uniform box as late as possible in the cooling sequence. Further,

limitations on the size and wall height of the uniform trap make it impossible to

load large thermal clouds at high temperatures.

Partially condensed clouds

Instead, we consider transferring a degenerate cloud. The entropy in this case takes

the form
S

kB

= (αi + 1)
ζ(αi + 1)

ζ(αi)
Nth,i. (4.10)

Assuming the cloud remains condensed, the final thermal number can be determined

from
Nth,2

Nth,1

=
(α1 + 1)

(α2 + 1)

ζ(α1 + 1)

ζ(α2 + 1)

ζ(α2)

ζ(α1)
= 2.81. (4.11)

The condensed fraction after transfer can be written as

N0

N

∣∣∣∣
2

= max

[
2.81×

(
N0

N

∣∣∣∣
1

− 0.644

)
, 0

]
. (4.12)

This suggests that the condensate will disappear if the initial condensed fraction

is below 64%. In our experiments, we are unable to measure condensed fractions

above 70% reliably. We do, however, observe that samples with smaller condensates

are no longer condensed after loading into a sufficiently deep box trap. In shallower

traps, evaporation can drive further cooling and condensation.

4.2.3 Evaporative cooling in the uniform trap

We can reduce the temperature and increase degeneracy in the uniform trap fur-

ther by lowering the optical power in the walls. As discussed in 3.5.1, evaporative

cooling in the uniform trap should be comparable to that in a conventional gravity-

compensated optical dipole trap. We see the effect of cooling in the sharp increase

of the occupancy of the low-momentum states, as shown in Fig. 4.3. In contrast
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Figure 4.3: (Reproduced from [20]) Evolution of the Bose gas in a uniform trap as

the optical power P is lowered from its initial value P0. Absorption images taken after

50 ms ToF. Insets show corresponding in situ images. Bottom row shows cuts through

the momentum distributions.

to the case of a harmonic trap, no dramatic effects of cooling are observed in situ.

However, the appearance of a BEC is clearly seen in the bimodality of the momen-

tum distribution and the anisotropic expansion in time of flight. Extracting the

condensate fraction and temperature from these images relies on an analytic model,

which we develop below.

4.3 Thermometry on a uniform BEC

As explained in 3.6.3, determining T , Nth and N0 from an absorption image relies

on a theoretical model. Condensation in the harmonic trap can be observed in

situ(i.e. in real space) as well as in ToF images (i.e. in momentum space). A

clear example of this was seen in Fig. 4.2 (c), where we show the fit to the thermal

wings of the condensate following 3.26. The excess atoms in the central region

can be identified with the condensate. In a box trap, both the thermal cloud and

condensate densities are uniform - Fig. 4.2 (d) shows no signature of condensation

comparable to the harmonic case. The variations in optical density are a result of

the box shape only. Consider a cylindrical box of length L and radius R, with its

axis at x = z = 0. Integrating along the imaging direction z, we expect

ñ(x, y, t = 0) ∝ Π
( y
L

)
Π
( x

2R

)√
1−

( x
R

)2

, (4.13)
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with the rectangle function Π(x) =

{
1, |x| ≤ 1/2

0, |x| > 1/2
. In practice, we have to correct

for the finite imaging resolution, σ, to determine L and R. Assuming a Gaussian

point spread function, we write

K(x, y) =
1√

2πσ2
exp

(
−x

2 + y2

2σ2

)
, (4.14)

ñ′(x, y, t = 0) =

∫∫
ñ(x′, y′, t = 0)K(x− x′, y − y′)dx′dy′. (4.15)

Fig. 4.2 (d) shows a typical fit (dashed green lines) with σ = 2.5µm, R = 15±1µm

and L = 63 ± 2µm. It is clear that these results apply to both the thermal atoms

and the condensate. To distinguish the two, we must consider the behavior of the

thermal cloud in time of flight.

4.3.1 ToF expansion from an ideal box

First, consider an ideal box of volume V , such that U(r) =

{
0, r ∈ V
∞, r /∈ V

. To

describe the thermal gas, we can consider the quantum-mechanical eigenstates εj

and their respective occupancies f [εj]. If we know the behaviour of the respective

wavefunctions Ψj(t), we can, in theory, deduce the condensate density (and any

other observable) at any time. While this approach is suitable for a simple potential

like a square box, finding the eigenstates and their time-dependence is a daunting

task for, say, a general power-law potential. It is thus helpful to consider the local

density approximation, which treats the gas as (locally) uniform at each point in

space [23].

Local density approximation

Within the LDA, we replace the sum over all macroscopic quantum states with a

sum over local plane-wave states of momentum p, as per∑
j

f [εj]→
∫∫

f [ε(p, r′)]
d3pd3r′

(2π~)3
, (4.16)

nth(r, t) =
∑
j

f [εj]
2|Ψj(r, t)|2 ≈

∫∫
f [ε(p, r′)] δ3

(
r−

(
r′ +

p

m
t
)) d3pd3r′

(2π~)3

(4.17)

Integrating over p, we get

nth(r, t) ∝
∫
f
[
ε
(
p =

m

t
(r− r′), r′

)]
d3r′ (4.18)
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So far, we have not made any assumptions about the nature of the potential or

the statistical properties of our gas. We now recall that a non-relativistic Bose gas

follows Bose-Einstein statistics, defined by

ε(p, r) = U(r) +
p2

2m
, (4.19)

f [ε] =
1

Z exp(βε)− 1
= g0(Z exp(−βε)). (4.20)

Using U(r) = 0 (uniform potential), and defining the thermal radius rth = t
√
kBT/m,

we find

nth(r, t) ∝
∫
V

g0

{
Z exp

[
−(r− r′)2

2r2
th

]}
d3r′. (4.21)

Unsurprisingly, this can be written as a convolution of the g0-like momentum dis-

tribution with the in situ density distribution nth(r, t = 0):

nth(r, t) ∝
∫
R3

g0

{
Z exp

[
−(r− r′)2

2r2
th

]}
× nth(r′, t = 0)d3r′ (4.22)

=

∫
R3

g0

{
Z exp

[
− r′2

2r2
th

]}
× nth(r− r′, t = 0)d3r′. (4.23)

Integrating both sides over z is straightforward in this form, and allows us to evaluate

the z′ integral (see Appendix E), yielding the column density

ñth(x, y, t) ∝
∫
R2

g1/2

{
Z exp

[
−x

′2 + y′2

2r2
th

]}
ñth(x− x′, y − y′, t = 0)dx′dy′. (4.24)

This is, again, a convolution of the (integrated) momentum distribution (mapped

to length units) with the in situ column density (4.13). Notice that the first term in

the integral above diverges at x = y = 0 as Z → 1 (µ → 0): we will return to this

property when we consider arbitrary power law traps below. The divergence is only

curbed by the initial size - the convolution is essential to obtaining a meaningful

model of the recorded optical densities. The striking difference between the uniform

and the harmonic case is illustrated in Fig. 4.4. In fact, the high occupancy of the

low-momentum states prompted us to scrutinize (4.17) by treating the problem fully

quantum-mechanically.

Quantum-mechanical description

The abundance of low-momentum states in our semi-classical distribution at µ = 0

raises the question whether these can be identified with the thermal cloud or must

be attributed to the atoms in the ground state of the trap, i.e. the condensate.
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Figure 4.4: Cross-section through the calculated optical density of a thermal cloud

with Z = 1 released from a harmonic (blue) and uniform (red) traps at long time of

flight. Both profiles are normalized to the same total atom number.

This is essential for extracting N0 correctly from time-of-flight imaging. A related

problem arising from (4.17) is that of the effect of the LDA on the predicted critical

number. The effect on the critical number is discussed in 5.1.1.

Here, we study the expansion of a thermal cloud from our box trap using a

non-interacting quantum-mechanical model. First, we consider the momentum dis-

tribution of the cloud, corresponding to the long-ToF behaviour of the sample. For

an ideal rectangular box with dimensions lx× ly × lz, we can write the energy levels

Enx,ny ,nz = ~2π2

2m
(n

2
x

l2x
+

n2
y

l2y
+ n2

z

l2z
), ni = 1, 2, . . ., with separable wavefunctions

Ψnx,ny ,nz(r) = Ψnx(x)Ψny(y)Ψnz(z), (4.25)

Ψnx(x) =

√
2

lx
sin

(
nπx

lx

)
, 0 ≤ x ≤ lx. (4.26)

The wavefunction is separable in both real and momentum space, and we can thus

consider one direction only. With l the relevant box size and p = ~k, the momentum

wavefunction takes the following form (up to a phase factor):

Ψn(k) =
1

2

√
l

π~

[
sinc

(
lk − nπ

2

)
− (−1)nsinc

(
lk + nπ

2

)]
. (4.27)

We plot |Ψn(k)|2 for n = 1, 2, 3, 4 in Fig. 4.5. For n ≥ 2, the eigenfunctions con-

tain a pair of peaks in momentum space, centered at k = ±nπ
l

. Importantly, the

momentum distributions of different thermal states add incoherently. In the high-

T limit, i.e., assuming similar occupation of the relevant quantum states, we can

approximate the momentum distribution as

f(k) ≈
∞∑
n=1

|Ψn(k)|2 =
∞∑

n=−∞

sinc2

(
lk − nπ

2

)
. (4.28)
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Figure 4.5: (a) Lowest 4 eigenstates of the box potential in momentum space, and

(b) an equivalent decomposition of the high-T momentum distribution.

The last sum is equivalent to a uniform distribution, as is best seen by applying

the convolution theorem to its Fourier transform (note this is not equivalent to the

real-space wavefunction).

While in the case considered above we assume a uniform occupation of all states

(and, implicitly, a microscopic occupation of the ground state), the treatment can

be extended to an arbitrary (thermal Bose) envelope applied to the n-states. For all

k & 1/l, numerical calculations (by directly summing over n-states with a suitable

Bose occupation factor) show that the momentum distribution is indeed equivalent

to the LDA prediction.

Next, we turn our attention to the central region of the cloud and small time of

flight, where both the LDA and the quantum-mechanical descriptions are affected

by initial-size effects, and we must solve the time-dependent Scrödinger equation to

allow direct comparison. The evolution of the wavefunction (4.26) is easy to describe

in k-space, leading to

Ψn(k, t) = Ψn(k, 0)× exp

(
−i~

2k2

2m
t

)
(4.29)

⇒ Ψn(x, t) ∝ Ψn(x, 0) ∗ 1√
t

exp

(
i
x2m

2~t
t

)
. (4.30)

To quantify possible discrepancies between the LDA and the wavefunction approach,

we consider a cloud released from a 30 × 30 × 30µm3 volume trap, and calculate

the column density numerically using each approach for a wide range of T and

µ. In Fig. 4.6 we illustrate the relative error in the column density at the box

center for different expansion times. Here, we show data for the case T = 100 nK,

µ = −0.1 kT , and sum states with nx, ny ≤ 100 explicitly. Higher-lying states are

taken into account by including an analytic remainder term. The agreement between
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Figure 4.6: Relative error of the semi-classical approximation. lx = ly = 30µm,

T = 100 nK, µ = −0.1 kT . States with nx, ny ≤ 100 are summed, and an analytical

estimate for the remainder term is used.

the LDA and the full quantum-mechanical sum is excellent, including at small time

of flight were we expect largest deviations. We thus use the LDA model for image

analysis throughout the experiments described in this Thesis.

4.3.2 ToF expansion from a quasi-uniform power-law trap

We now extend the LDA treatment of 4.3.1 to a general power-law potential U(r) ∝
rs. The Bose factor becomes

f(p, r) = g0

{
Z exp

[
−βasrs − β

p2

2m

]}
. (4.31)

Integrating f over p (see Appendix E), we find the in situ density distribution

nth(r, t = 0) ∝ g 3
2
{Z exp [−βU(r)]} . (4.32)

On the other hand, we can integrate f over all r to find the momentum distribution

of the cloud (as measured in the very long ToF):

nth(p) ∝ g 3
s

{
Z exp

[
−β p

2

2m

]}
, (4.33)

where 3
s
≡ α − 3

2
, according to the notation introduced previously. Now, it is

tempting to write the ToF density as a convolution of the two. Formally, (4.18)

remains unchanged, and

nth(r, t) ∝
∫
g0

{
Z exp

[
−βU(r′)− (r− r′)2

2r2
th

]}
d3r′. (4.34)

However, in the general case s <∞, the integrand can not be factorized like we did

above. Thus,

nth(r, t) 6=
∫
nth

(
p =

m

t
(r− r′)

)
× nth(r′, t = 0)d3r′. (4.35)
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The integrand does, however, factorize when the exponential factor is small and

g0(Ze(··· )) ≈ Ze(··· ) (i.e. the Bose factor takes the Boltzmann form). Moreover,

if the potential has sharp walls in one direction, the line density
∫∫

n along this

direction will be described precisely by the convolution with a box function, while

α will be determined by the “invisible” directions. Even in the most general case,

numerical modeling shows that the difference between the exact distribution and

one written as (4.35) is diminishing as one goes from n to column density ñ =
∫
n

to line density
∫
ñ =

∫∫
n.

In practice, the in situ density is indistinguishable from that of a uniform box due

to the limitations of our imaging system, and we can use the form (4.13). We always

analyze the region r & rth, and the time of flight is large to ensure that rth � R,L,

meaning that convolving the (integrated) momentum distribution (4.33) with (4.13)

introduces a very small correction outside the central region. In the central region,

on the other hand, it is convenient because it ensures the correct normalization of

our distribution and allows us to count the thermal atom number without worrying

about the divergence of the fitting function. The details of our fitting routine are

summarized in the following section.

4.3.3 Image analysis

To analyze the column density extracted from the absorption images, we use two-

dimensional fitting functions of the form2

ñ(x, y) =
2πA

rxry
gα−1

{
exp

(
µ̃− x2

2r2
x

− y2

2r2
y

)}
∗K(x, y), (4.36)

with the convolution kernel normalized to
∫∫

K(x, y)dxdy = 1. We perform least-

square fitting by minimizing
∑

i,jMi,j|ñ(xi, yj) − ñi,j|2 over the pixels (i, j) of the

high-intensity absorption image, with the exclusion mask M defined by

Mi,j =

{
1, (xi−xc)2

r21
+ (xi−xc)2

r22
> 1

0, otherwise
. (4.37)

Exclusion radii r1 and r2 are chosen such that the quasi-pure condensates remain

within the excluded region throughout ToF. The fitting parameters (α,A, µ, rx, ry)

2We assume that ODs have been converted to atomic column densities.
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relate to the thermodynamic properties of the condensate via3

Z = eµ̃, (4.38)

Nth = Agα(Z), (4.39)

kBTx,y =
r2
x,ym

t2
. (4.40)

We extract the condensate number N0 by counting the difference between the mea-

sured column densities and the thermal fit over the exclusion region:

N0 =
∑
i,j

(1−Mi,j)(ñi,j − ñ(xi, yj)). (4.41)

On thermodynamic grounds (Chapter 2), the overall amplitude A is not an inde-

pendent parameter. In fact, for an ideal Bose gas,

Ath =

(
kBT

Eα

)α
≡
(
T

θα

)α
(4.42)

θα = const (4.43)

We will use this equality in the analysis of our trap below, as well as in the context

of saturation in Chapter 5.

4.4 How good is our trap?

As discussed in [20], determining the value of α from the least-square fits is impracti-

cal. While it is easy to distinguish α = 3 (harmonic) from α = 3/2 (uniform), small

variations around the latter do not lead to a noticeable increase in the least-squares

residue. However, we can check the self-consistency of the fits according to (4.43).

Identifying the value of α to be used in fits is essential to determining N0, Nth and

T accurately. In Figure 4.7 (a), we plot θ versus T for 1.5 ≤ α ≤ 2.0. The data

is extracted by fitting our model to a range of clouds obtained by varying the final

evaporation depth in the box trap. The analysis presented here is similar to that

published in [20], with the following differences:

� We fit the 2D column density distribution ñ(x, y), while in [20] the data was

integrated and fitted in 1D.

3We define two temperatures for fitting purposes, one of the two is typically affected by resid-

ual trapping during the expansion. We introduce the necessary corrections, as well as a model-

independent way to measure energy, in the next Chapter.
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� We use an elliptic exclusion region, while [20] effectively excludes a strip region

(since exclusion is done on the integrated 1D data).

� We restrict our analysis of θ to high-temperature clouds (70 nK ≤ T ≤
110 nK).

Using a smaller temperature range solves several problems: first, as discussed in

section 4.1.1, the effective value of α could vary with T ; second, non-saturation

effects [76] can potentially make θ dependent on the condensate fraction.

We extract the slopes of the straight-line fits shown in Fig. 4.7 (a), and plot them

against α in Fig. 4.7 (b). It is clear that the condition dθ/dT = 0 strongly excludes

the values α ≥ 1.7. Thus, we can say that the effective power of our potential is

s ≥ 15. We use the value α = 1.6 (s = 30) to extract the atom numbers in the

thermal cloud and in the condensate, and plot them versus T in Fig. 4.7 (c) and

(d), respectively. The fit in (c) corresponds to Nth ∝ Tα, and shows good agreement

with the data. We can use the N0 data to identify the transition point. From (d), we

observe Tc = 105±5 nK. The predicted value for the corresponding ideal-gas critical

number is Nc = 6.5±0.8×105 (using the measured box dimensions L and R). Both

values with their error bars are shown in Fig. 4.7 (c), and the thermal number at

the transition proves to be in excellent agreement with the ideal gas prediction.

In this Chapter, we have described the implementation of the first ever degen-

erate Bose gas in a uniform system. Understanding the inherent limitations of our

approach is important for both developing the experimental setup and quantifying

deviations from the theoretical box-like system. Our estimates show that these are

extremely small, and first measurements suggest that the thermodynamics of the

system closely follow the ideal-gas prediction made a century earlier. In subsequent

Chapters, we continue probing our system using a variety of techniques. Our focus

will be on testing the uniform-system behaviour while keeping in mind the influence

of imperfections in our trapping geometry.
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Figure 4.7: Self-consistency of thermodynamic properties of a quasiuniform degen-

erate Bose gas. (a) Variations of θ with T for different assumed α (see text; data sets

correspond to the values of α shown in (b), i.e. between 1.5 (bottom, red) and 2.0

(top, orange)). (b) Slopes of the linear fits to θ v.s T for different α, extracted from

(a). (c) Thermal atom number versus T , extracted using α = 1.6. The solid red line

shows the expected Tα scaling, and the black lines indicate the critical number and

temperature. (d) Condensed atom number versus T , extracted using α = 1.6. Black

lines show the same critical temperature as in (c).
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Chapter 5

Thermodynamics of a Uniform

BEC

5.1 Transition temperature of a uniform BEC

One of the most important characteristics of Bose-Einstein condensation is the crit-

ical atom number Nc(T ). Historically calculated for an ideal uniform system [3–5],

the treatment was later extended to consider the effects of interactions [84, 85] and

finite trap size [86]. However, since most experiments to date have been conducted

in harmonic traps, the theoretical focus has shifted towards these. A large number

of theoretical [87–89] and experimental [16,90,91] studies have been conducted. Re-

cently, the theory of condensation in more general power-law traps has also been

considered [92, 93]. Below, we review the key theoretical results. We then present

measurements of Nc in our box trap and compare these with theoretical predictions.

5.1.1 Theoretical description

Within the local density approximation (LDA), the thermal density, that is, the

density of particles in the excited states, is limited to nc = ζ(3/2)λ−3
T , with the

thermal wavelength λT = (2π~2/mkBT )
1/2

, as defined in Chapter 2. This result

extends trivially to a uniform system by multiplying both sides by the volume V .

In a uniform system, condensation occurs simultaneously throughout the volume.

The LDA can be extended to treat interactions between the thermal and condensed

atoms, which we address in 5.2. Here, we only need to note that the interactions do

not change the transition temperature Tc in a uniform system [23].

In a harmonically trapped gas, on the other hand, the density at the centre of
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5.1. TRANSITION TEMPERATURE OF A UNIFORM BEC

the trap is higher and exceeds nc before other regions, and the interactions affect

the transition temperature (among other properties).

However, the LDA explicitly neglects the effects of the low-momentum cut-off

due to the finite size of the system: the lowest eigenstates of the trapping potential

are far from being plane-wave states of the LDA. Thus, to account for the finite trap

size, we must re-examine the density of states description.

Semi-classical description

As explained in 4.3.1, the main difference between the LDA and the full quantum-

mechanical description lies in the way we count occupancies of all the energy eigen-

states, as seen from the LDA∑
j

f [εj] ≈
∫∫

f [ε(p, r′)]
d3pd3r′

(2π~)3
(5.1)

(with the Bose factor f). Here, the left-hand side corresponds to the (exact) sum

over all eigenstates j, while the right-hand side illustrates the phase-space integral

used in the LDA . Evaluating the sum on the left is rarely possible directly, while

the LDA can not, by definition, describe any effects of the finite trap size. On the

other hand, the semi-classical approximation is often employed to write the sum on

the left as ∑
j

f [εj] ≈
∫
f [ε]g(ε)dε, (5.2)

with the density of states g(ε) defined by∫ ε

0

g(ε′)dε′ =
∑
j:εj≤ε

1. (5.3)

To count the states with energies not exceeding ε, we start by considering a cubic

box with side length L. The energy levels are given by

Enx,ny ,nz = E0(n2
x + n2

y + n2
z), (5.4)

with ground-state energy E0 = π2~2
2mL2 and integer quantum numbers nx,y,z ≥ 1. E ≤ ε

corresponds to a volume in (nx, ny, nz) of approximately

V0(ε) ≈ 1

8
× 4π

3

(
ε

E0

)3/2

. (5.5)

The corresponding density of states is

g0(ε)dε = dV0 ≈
π

4

(
ε

E0

)1/2
dε

E0

. (5.6)

This result is equivalent to the one quoted in Chapter 2 for s→∞.
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Finite size effects

nx 

ny 

nx 

ny 

nz 

(a) (b) 

1 0 

1 

Figure 5.1: Origin of finite size corrections in a uniform box. (a) Values of nx,

ny contributing to the sum. The states (small circles) are shaded according to their

thermal occupation number, from black (high) to white (low). Dashed circle : ε =

const. (b) Origin of the higher-order corrections to the density of states: three planes

(nx = 0, ny = 0, nz = 0), three lines (nx,y = 0, ny,z = 0, nz,x = 0) and the origin

(nx,y,z = 0) (see text).

We now consider the above standard derivation of g(ε) in more detail. In counting

the states contained within a sphere of radius
(

ε
E0

)1/2

in the (nx, ny, nz) space, we

have implicitly included those points with one of the quantum numbers equal to 0.

This is illustrated in Figure 5.1 (a), where only the allowed states (nx, ny, nz ≥ 1)

are marked. To correct, we can subtract those “states” with nx = 0 etc., which

occupy the planes shown in Figure 5.1 (b). Now, those states with say nx = ny = 0

will have been subtracted twice, which can again be accounted for by introducing

corrections for the states along the three axis (red in Fig. 5.1 (b)). Formally, one

last term can be introduced for over-counting the state at (0, 0, 0). This yields the

corrected expression

V (ε) =
1

8
×

[
4π

3

(
ε

E0

)3/2

− 3× π
(
ε

E0

)2/2

+ 3× 2

(
ε

E0

)1/2

− 1

]
. (5.7)

The corresponding density of states is

g(ε)dε = dV =

[
π

4

(
ε

E0

)1/2

− 3π

8
+

3

2

(
ε

E0

)−1/2
]

dε

E0

. (5.8)
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Now, evaluating the integral (5.2) is non-trivial. When using g0(ε), we simply set

Z = 1 and integrate over 0 ≤ ε ≤ ∞. This does not work with the second term

in g(ε) - the integral diverges. The problem has been treated extensively in [86].

As can be expected on dimensional grounds, the lower bound must be replaced by

approximately1 E0, leading to the following form for the finite-size correction to the

well-known result (2.6):

Tc
Tc,0
− 1 ≈ − 2√

3π

1

ζ(3/2)
(β0E0) ln(β0E0), (5.9)

β0E0 =
E0

kBTc,0
≈ 2.1N−1/3. (5.10)

We have extended this treatment to account for the anisotropy of the trap. For a

0 2 4 6
0.04

0.06

0.08

0.1

0.12

Nê105

T
c
êT

c,
0

-
1

Figure 5.2: Finite size correction. Box size is a = 2.4b = 2.4c = 63µm. We show the

prediction of the equation (5.11) (solid line) and results obtained by direct summation

over states.

trap with sides a, b, c, we find that the finite-size correction takes the form

Tc
Tc,0
− 1 ≈ −s(a, b, c) 2√

3π

1

ζ(3/2)
(β0E0) ln(β0E0), (5.11)

with the shape factor

s(a, b, c) =
(abc)1/3

((a−1 + b−1 + c−1)/3)−1 . (5.12)

The finite-size correction is positive for realistic N , and is typically of the order of

5%. s is typically very close to unity: for a = 2b = 2c, s− 1 ≈ 5%. In Fig. 5.2, we

compare the asymptotic expression (5.11) with the critical temperature obtained by

explicitly summing the left-hand side of (5.2) numerically, and find good agreement.

1This applies to the first term of the integral as well. The corresponding correction is small due

to fast convergence of the corresponding integral near 0.
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5.1.2 Measuring the critical point
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Figure 5.3: Critical point for condensation (reproduced from [21]). A power-law fit,

Nc ∝ Tαc , gives αc ≈ αf = 1.65 (see text). Bottom inset: Within errors, αc = αf

(solid line) is satisfied for 1.6 . αf . 1.7. Top inset: Comparison with theory of a

perfectly homogeneous gas, with fixed αc = αf = 3/2.

While detecting small corrections is beyond our measurement accuracy, showing

the Nc ∝ Tα scaling of the critical number also requires extra care. Experimentally,

detecting the transition point relies on measuring N0, which in turn depends on

the value of the trapping parameter α (define in Chapter 2) chosen for fitting the

measured momentum distribution. Thus, we perform the analysis for a range of

assumed values, αf . We image clouds close to the critical point after 50 − 70 ms

of time-of-flight expansion from the trap. We vary T by changing the evaporation

sequence, and the total atom number N by changing the initial loading of the

trap. After forced evaporation we always raise the trap depth to ∼ kB × 0.4µK,

where evaporation is negligible, and hold the gas for another 1 s to ensure thermal

equilibration before ToF. We analyze the images by fitting the thermal wings using

the assumed value αf , and identify the critical point with the appearance of small

BECs on top of the thermal profile, with N0 ≤ 5000. Both N and T at the critical

point depend on the αf used. We plot Nc(T ) and fit the data with a function of

the form Nc ∝ Tαc , deducing the best value for αc from least-squares fitting. The

bottom inset in Fig. 5.3 show αc vs αf . Self-consistency requires αc = αf , which

is the case for 1.6 . αf . 1.7. This suggests that our trap deviates slightly from

the ideal box, with α = 1.65 corresponding to s = 20. At the same time, the data

agrees reasonably well with αf = αc = 3/2, as shown in the top inset of Fig. 5.3.

Deviations from the ideal box can be alternately attributed to a slight variation of
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the effective trapping volume V with temperature, V ∝ Tα−3/2. From in situ images,

we indeed measure a (20± 10)% increase in the cloud volume between T = 25 and

50 nK, which is consistent with our α.

We now turn to the absolute value of Nc. In line with the ideal box assumption,

this is best described in terms of the critical phase space density ρc = Ncλ
3
T/V . The

data in Fig. 5.3 agrees with ρc = 2.0±0.2, while the LDA value is ρc = 2.612. With

the finite size correction, we expect ρc ≈ 2.4. The small remaining discrepancy

is within our systematic uncertainties of 10% in Nc (resulting from the absolute

number calibration described in Chapter 3) and 20% in V (volume measurements

are described in Chapter 4).

5.2 Saturation of the thermal gas in a box

Next, we turn to studying partially condensed clouds. In Einsteins ideal-gas picture

of condensation, Nth saturates at the critical point and can never exceed Nc. In a

harmonically trapped gas, this picture is strongly violated even for weak interac-

tions, such as in 87Rb, and can be recovered only by extrapolating to the strictly

noninteracting limit [76], where direct measurements cannot be performed due to

the absence of thermal equilibrium [94]. This strong deviation from ideal-gas be-

havior arises due to an interplay of interactions and the nonuniformity of the gas,

and can be explained by using a mean-field theory that does not require violation

of the saturation picture at the level of the local thermal density [91].

While interactions have no effect in the critical point in a uniform system (within

LDA), they can change the number of available thermal states when a condensate

is present. We first consider the effects of mean-field interactions on the saturation

in a uniform system, before turning to experimental measurements of Nth below the

condensation point.

5.2.1 The Popov approximation

Within the LDA, we define the condensate and thermal densities, n0 and nth. A

thermal atom experiences the mean-field energy 2γn, where γ = 4π~2a
m

and n =

n0+nth, while the condensate atoms are subject to the mean-field energy γn0+2γnth

[23]. Within the semi-classical Popov approximation, valid for all temperatures

below (but not too close to) Tc [23,95–99], the effect of interactions can be described
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by a set of equations for n0 and nth:

εa(p) =
p2

2m
+ γn0, (5.13)

ε(p) =
[
ε2a(r,p)− (γn0)2

]1/2
, (5.14)

µ = γn0 + 2γnth + U, (5.15)

nth =

∫
g0

(
e−βε(p)

) εa(p)

ε(p)

d3p

(2π~)3
. (5.16)

(5.17)

These can be solved self-consistently for a range of µ using suitable numerical
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Figure 5.4: Numerical solutions of the Popov equation in different power-law po-

tentials. We mark thermal clouds with atom number up to Nc (red) and partially

condensed clouds with increasing condensate fraction (blue). Nth decreases with N0

for large s and increases for small s. Only for s ≈ 7 is the cloud saturated (note the

different scale).

methods [100]. Once we have the µ-dependent LDA solution, we can easily determine

N0 and Nth for an arbitrary trapping potential V (r) by integration. In Fig. 5.4 we

show such solutions for a range of µ. An unfortunate feature of the equations

above is that their solutions are discontinuous near the transition point, as seen in
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the sudden increase in condensed fraction as µ exceeds 0. In any finite power-law

potential, the discontinuity disappears, because the onset of condensation is not

simultaneous throughout the trapping volume. In quasi-uniform traps (s � 2),

the theory predicts a decrease in Nth as N0 increases - in contrast to the s = 2

(harmonic) trap [28].

The dominating effect in a uniform potential is due to the modification to the

dispersion relation due to the finite condensate density, as described by (5.14). This

leads to a change in the density of states, and thus a decrease in the maximum

thermal density. In a harmonic trap, on the other hand, the effect is geometric:

the condensate, centered near the potential minimum, forces the thermal cloud into

a “mexican-hat” potential, thus modifying the density of states in the opposite

direction on a global rather than local level.

It has to be noted that the exact shape of the potential is irrelevant within the

LDA - the saturation behaviour is determined by the volume distribution of trapping

potential values, i.e. PU(u)du =
∫
δ (U(r)− u) d3rdu. Thus, the effect of finitely

steep walls is indistinguishable from floor noise of the same height in the central

region of the trap.

Further, it has been shown [28, 76] that beyond-mean-field effects contribute

significantly to the non-saturation in harmonic traps. Their influence in uniform

traps is unclear and remains to be studied in the future.
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5.2.2 Experimental results
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Figure 5.5: (a) Saturation in a uniform Bose gas (adapted from [21]). The quasi-

uniform clouds have Tc = 45± 1 nK. The red data points were taken in the harmonic

trap used to load our box, with T ≈ 110 nK and Nc ≈ 65 × 103. The dashed red

line is the theoretical prediction from the previous section (also described in [16,76]).

(b) Self-consistency check for partially condensed clouds. For each αf used for image

analysis, we determine αc from the fit Nth ∝ Tαc to the data (see text).

To study saturation, we use a variation of the experimental methods described in

5.1.2. First, we prepare degenerate samples with the condensate fraction of up to

40%. We then hold the cloud in the box trap at a constant temperature T . This

is achieved by choosing a suitable box depth. Usually, our temperature is stable

to ±3%. We also post-select our data to exclude temperature outliers. As the

atom number decays due to background collisions, we obtain clouds with a varying

condensed fraction N0/N . Consistently with 5.1.2, we analyze the data assuming

α = 1.65. We plot the results in Figure 5.5(a) (blue points).

It can be seen that the gas is saturated to within our experimental errors. De-

tecting the mean-field effects described above would require a significantly higher

precision. For comparison, we show the strongly non-saturated thermal fraction in

the harmonic trap, which shows significantly non-saturated behaviour.

Using our results for the critical atom number, saturation is equivalent to Nth =

Nc(T ) ∝ Tα. Having checked this scaling at the transition, we now want to confirm

its validity for all partially condensed clouds. Again, we require self-consistency

between the value αf used for image analysis, and the value αc providing best least-

squares fit to the data. The result is shown in Figure 5.5 (b). We can see that the

data are consistent with ideal uniform gas theory, while power-law potentials with
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Figure 5.6: Condensed fraction of a partially condensed cloud in a quasi-uniform

trap. We show data analyzed with α = 1.5 (red), 1.73 (magenta) and 3 (blue). The

data points and error bars are deduced from a running average (raw data shown in

the background). Inset: χ2 values for a range of α. α = 1.73 produces excellent

agreement, while α = 1.5 is also very good.

s < 15 are strongly excluded.

A direct implication of saturation is the scaling of the condensed fraction with

temperature [23]:

N0

N
= 1− Nth

N
= 1− Nc

N
= 1−

(
T

Tc

)α
. (5.18)

Keeping Tc constant while varying N0 is impractical, but we can still define Tc for

each N and plot the data accordingly. Again, we perform this analysis for different

α. Varying α changes both the data and the theoretical prediction, and we require

self-consistency between the two, as shown in Fig. 5.6.

Again, we see excellent agreement for α ≤ 1.75, seen both visually and by com-

paring χ2. This is, of course, a direct consequence of the previously tested scaling

of the critical number with temperature, and of saturation.

5.3 Energy and heat capacity

Next, we consider the energy E of the expanding condensate. The energy and

its derivative, the heat capacity C = dE/dT |V , are of particular interest as their

behaviour near Tc changes qualitatively between uniform and harmonic systems:

while C is continuous in uniform traps (α = 3/2), it exhibits a discontinuity in

harmonically trapped gases (α = 3, and, in fact, for all α > 2) [23]. ToF imaging
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offers a way to extract the kinetic energy of the condensate in a model-free way. We

will consider how this relates to the total energy, and quantify the role of interactions.

5.3.1 Theory

We start by considering an ideal gas. Using the results from Chapter 2, we can write

the energy of a non-interacting Bose gas as a function T/Tc, in the spirit of (5.18):

E

NkBT
=

α
ζ(α+1)
ζ(α)

(
T
Tc

)α
, T

Tc
≤ 1

α gα+1(Z)
gα(Z)

, T
Tc
> 1

. (5.19)

Note that this energy term corresponds to the kinetic energy of the thermal atoms

only (see below). In the case T
Tc
> 1, Z has to be determined by numerically solving

gα(Z) = ζ(α)

(
T

Tc

)−α
. (5.20)

At high temperatures, we recover the well-known classical result E = αNkBT . E

includes contributions from both kinetic and potential energy. In a typical experi-

mental sequence, we switch off the external potential and let the cloud expand freely.

Thus, only the kinetic energy is accessible in our measurements. The ratios of the

kinetic and potential energies to the total energy E are given by the virial theorem:

Ekin =
3/2

α
E, (5.21)

EU =
α− 3/2

α
E. (5.22)

In the limit α → 3/2, we can thus measure the total energy of the cloud as Ekin

(EU = 0).

Next, we consider the contribution due to mean-field interactions. Unlike the

potential energy, the interaction energy Eint is converted into kinetic energy as the

cloud expands. By writing Eint/NkB = γn/kB, we estimate that the interaction

energy per atom corresponds to ∼ 1 nK for 105 atoms in a typical trap. This

contribution is negligible.

Finally, the kinetic energy of the condensate atoms is significantly smaller than

Eint - a key assumption within the Thomas-Fermi approximation.

5.3.2 Extracting energy from ToF images

In 4.3, we explained how the momentum distribution of the cloud maps to the atomic

density in ToF. We define the “point source” atomic density n∞(r, t) ≡ n(p = mr/t),
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which describes the expansion from a trap of negligible size (or at large t), and the

normalized in situ density K(r). The kinetic energy can be expressed as the integral

over the cloud’s momentum distribution n(p), or, equivalently, in terms of the second

moment of n∞(r):

Ekin =
2m

t2

∫
n∞(r, t)r2d3r. (5.23)

For sufficiently steep trapping potentials and finite times, the atomic density after

time t is given by the convolution

n(r, t) = n∞(r, t) ∗K(r). (5.24)

The second moment of the finite-t density distribution is not the sought energy.

However, we can make use of a general theorem about the 2nd moment of the

convolution 2 [101]: assuming all density distributions are centrally symmetric, we

find the exact result∫
n(r, t)r2d3r =

∫
n∞(r, t)r2d3r

∫
K(r)d3r +

∫
n∞(r, t)d3r

∫
K(r)r2d3r (5.25)

=
t2

2m
Ekin +

∫
n∞(r, t = 0). (5.26)

Thus, correcting for the initial cloud size is possible by writing

Ekin =
2m

t2

(∫
n(r, t)r2d3r−

∫
n(r, t = 0)r2d3r

)
. (5.27)

At fixed N , the initial size correction grows quadratically with the linear size of the

trap, and can be significant for larger boxes at typical ToFs.

Hidden direction

In practice, we can only measure the column density ñ(x, y). We can thus extract the

second moment w.r.t. x and y, but not z. Luckily, our trapping geometry possesses

cylindrical symmetry around the x = z = 0 axis, and this gives
∫
n(r)z2d3r =∫

n(r)x2d3r. For each term in (5.3.2), we can thus write∫
n(r)r2d3r =

∫
ñ(x, y)(2x2 + y2)dxdy. (5.28)

In this form, we can extract the kinetic energy by direct summation over the optical

density images.

2Generally, for h = f ∗ g, the pth moment of h satisfies m
(h)
p =

∑
0≤k≤p

(
p
k

)
m

(g)
k m

(f)
p−k. We use

the special case p = 2, and m1 = 0 for centrally symmetric distributions.
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Correcting for residual potential curvature

Above, we have assumed that momentum p maps to position as p→ r = (x, y, z) =

tp/m. This is only true in absence of any external fields during ToF. As explained

in 4.1.2, our gravity compensating setup introduces a harmonic trapping frequency

ωr ≈ 1.6 Hz in the horizontal (y) direction3. Thus, the mapping is modified to

p → r = (x′, y′, z′) with x′ = x, y′ = sinc(ωrt)y and z′ = sinc(ωrt)z. The corrected

expression for the kinetic energy thus becomes

Ekin =
2m

t2

∫
ñ(x, y, t)

[
2x2 +

y2

sin(ωrt)

]
dxdy−

− 2m

t2

∫
ñ(x, y, t = 0)

[
2x2 + y2

]
dxdy.

(5.29)

5.3.3 Results

We now use the optical density images from 5.2.2 to extract energies using (5.29). In

practice, the noise far from the cloud center is amplified significantly due to the r2

scaling. We thus replace the pixel values in the thermal wings outside the exclusion

region (as defined in 4.3.3) by the best-fit model values to ensure convergence. At

t = 50 ms, the correction to energy due to the residual harmonic trapping is ≈ 10%

in the x-direction. We plot the kinetic energy per particle against T/Tc in Fig 5.7,

and compare it with the prediction (5.21). As in Fig. 5.6, the choice of α affects both

the theory and the data. The Ekin plot indicates that the analysis is particularly

sensitive to the value of α, and in fact excludes α = 3/2 for the data set shown,

giving an estimate for α very close to that obtained in 5.1.2.

Our data is also consistent with the prediction that the heat capacity is contin-

uous. At the same time, it has proven challenging to detect the discontinuity in the

first derivative of energy in harmonic condensates [102]. Another way to approach

the problem is to note that dµ/dT = 0 when CV is continuous, and vice versa. How-

ever, determining µ from the shape of thermal clouds is extremely unreliable, and

our data is not accurate enough to distinguish between µ approaching zero linearly

and quadratically.

3Gravity compensation during long ToF is necessary due to the limited size of our CCD: the

cloud falls outside the imaging area otherwise.
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Figure 5.7: Kinetic energy of a Bose gas in a quasi-uniform trap. We show data

analyzed with α = 1.5 (red), 1.73 (magenta) and 3(blue). The data points and error

bars are deduced from a running average (raw data shown in the background). Inset:

χ2 values for a range of α. α = 1.73 produces excellent agreement, while α = 1.5 is

also very good.

5.4 Quantum Joule-Thomson effect in a Bose gas

Finally, we consider the long-time evolution of a partially condensed Bose gas held in

the (uniform) box trap. We typically prepare clouds at Ti ≈ 45 nK in a trap of depth

U0 ∼ 10− 20kBTi, chosen such that evaporation is negligible. As the gas is held in

the trap, atoms are slowly removed from the cloud, with an exponential time scale

τ ≈ 10 s, by collisions with the background gas in the vacuum chamber. Because

of low atomic density (n < 5 × 1012 cm−3), the three-body recombination rate is

negligible [30]. As N decays, the elastic collision rate (among the trapped atoms)

remains sufficiently high for the gas to continuously reequilibrate on a time scale

τeq . 2 s � τ [103]. Crucially, collisions with the background gas are independent

of the energy of the trapped atoms, so the average energy per trapped particle,

E/N , remains constant. Within the ideal-gas approximation, pressure is simply

given by the energy density, so enthalpy H is simply proportional to E, and the

specific enthalpy h = H/N is a conserved quantity. The decay of the cloud is thus

equivalent to the Joule-Thomson isoenthalpic rarefaction. In a classical ideal gas, h

depends only on T , so temperature cannot change in an isoenthalpic process. This

is, however, not true for a quantum degenerate ideal gas [104]. The resulting change

in temperature in a Joule-Thomson process is known as the Joule-Thomson effect.

We now show that the ideal Bose gas cools during isoenthalpic rarefaction, and
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compare the effect with that seen in classical gases.

5.4.1 Joule-Thomson effect in partially condensed clouds

To include both ideal box and power-law traps in our description, we first recall

the definition of enthalpy. In a uniform system, H = E + pV . While in a more

general trap we have to replace p, V by a suitable pair of conjugate variables (with

V describing the trapping geometry), we can always write H = G + TS, where

G = NkBT ln(Z) is the Gibbs free energy. Using results from Table 2.1, we find

that

H =
α + 1

α
E. (5.30)

In a uniform ideal gas, this also follows directly from E = 3
2
pV . Thus, keeping

E/N constant does indeed correspond to an isoenthalpic process (h = const). For

partially condensed clouds, we can write

h =
H

N
∝ NckBT

N
∝ Tα+1

N
= const. (5.31)

The last equation shows that, as N decreases, T follows a simple power law. This

scaling is only valid while the condensed fraction is non-zero.

Consider a cloud with initial temperature Ti, total atom number Ni and ther-

mal number Nth,i. While isoenthalpy implies N ∝ Tα+1, the thermal number is

saturated, and therefore Nth ∝ Tα. The thermal fraction thus follows

Nth

N
∝ T ∝ N1/(α+1). (5.32)

As the thermal fraction increases to 1, the condensate disappears. This happens

when
N

Ni

=

(
Nth,i

Ni

)α+1

. (5.33)

5.4.2 Experimental results

An experimental confirmation of the above scaling is shown in Fig. 5.8. We rescale

temperatures and numbers to their values at the beginning of hold time. We show the

evolution of a partially condensed sample (blue points, Ni = 1.7× 105, Ti = 46 nK)

and a thermal sample (red points, Ni = 0.7 × 105, Ti = 52 nK). Each point is

obtained by averaging over five repeats of the experimental sequence. The data

for partially condensed clouds is indistinguishable from the uniform-trap scaling

T ∝ N1/2.5 (dashed blue line in the figure). While our theory describes the data
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Figure 5.8: Quantum Joule-Thomson effect in a partially condensed (blue) and

thermal (red) clouds. The solid and dashed blue lines are predictions of Eq. (5.31)

with α = 1.65 and α = 3/2, respectively.

well, we have to address several features for completeness. First, our partially con-

densed clouds start with a condensed fraction of 30± 5%. According to (5.33), the

cloud should be purely thermal below N/Ni = 40 ± 6%, while we see continued

cooling. Second, the thermal sample prepared with N/Nc . 50% also exhibits some

cooling, which could be mis-interpreted as a consequence of evaporation. Thus, we

must consider the isoenthalpic evolution of thermal samples, as well as the effect of

external cooling (or heating).

5.4.3 Joule-Thomson cooling in a thermal Bose gas

It is instructive to recall the energy plot from Fig. 5.7, where we plotted (up to

a constant factor) E/(NT ) vs. T/Tc. With E/N = const and Tc ∝ N1/α, this

becomes a plot of 1/T vs. T/N1/α. As N decreases, the cloud is thus constrained

by the energy curve in a way that requires an associated decrease in T , simply due

to the fact that E/(NkBT ) increases with T/Tc as the fraction of particles with zero

energy decreases. At very high temperatures, the cloud behaves classically and (in

absence of interactions) the temperature remains constant along the isoenthalp.

Using the energy plot, we can predict the evolution of a thermal cloud by solving

E/N = Ei/Ni numerically. This allows us to extend our treatment to clouds both

above and below condensation. We show the results of numerical calculations in

Fig. 5.9 for the starting conditions corresponding to our two samples. Interestingly,

while the condensate is depleted below N/Ni ≈ 0.45, the deviation from (5.31) is

minimal down to N/Ni ≈ 0.15. Further, our parameter-free model correctly predicts
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the slight cooling of the thermal sample.
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Figure 5.9: Quantum Joule-Thomson effect in a partially condensed (blue) and

thermal (red) clouds. The solid blue line is as in Fig. 5.8, while the dashed blue and

red lines are numerical calculations described in the text. The shaded areas show the

effect of heating or (evaporative) cooling between ±5 nK/lifetime (see text).

5.4.4 Effect of heating and evaporation

The starting point of our treatment has been the assumption that loss of atoms from

the trap is independent of their energy. This can be written as a rate equation of

the form

dE =
E

N
dN. (5.34)

We now seek to estimate potential contributions due to external heating (e.g. due to

glancing collisions [103] or scattered trapping light) or cooling (due to evaporation).

We add a heating term to the above equation and write

dE =
E

N
dN − αNkBT̃dN. (5.35)

The last term corresponds to a constant heating rate per atom. Assuming that the

atoms are lost on a time scale τ , we can write dN = −Ndt/τ , and a sample far

from condensation (and thus with heat capacity αNkB) would experience a change

in temperature of T̃ in time τ . Solving this equation, we find

E

N
=
Ei

Ni

− αkBT̃ ln

(
Ni

N

)
. (5.36)

This no longer describes isoenthalpic evolution, but allows us to extract T numeri-

cally, as described above. For partially condensed clouds, we find an analytic result
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modifying (5.31): (
T

Ti

)α+1

=
N

Ni

− T̃

Ti

N

Nth,i

ln

(
N

Ni

)
. (5.37)

In Fig. 5.9, we show predictions derived from (5.36) for −5 nK ≤ T̃ ≤ 5 nK as shaded

areas. This corresponds to heating rates between ±0.5 nK/s. It can be seen that

our data strongly excludes higher heating (or cooling) rates. Especially for small

N/Ni, we expect our data to be extremely sensitive to heating. At the same time,

our temperature fits become less reliable due to decreasing optical densities of the

clouds.

5.4.5 The Joule-Thomson coefficient

In classical gases, one commonly defines the Joule-Thomson coefficient

µJT =

(
∂T

∂P

)
h

. (5.38)

For an ideal partially condensed Bose gas in a uniform trap, we can write

µJT =
3

2
V
N

E

(
∂T

∂N

)
h

. (5.39)

More conveniently expressed, the derivative of the scaling (5.31) (dashed blue line

in Fig. 5.8) corresponds to [23]

µJT =
2

5ζ(5/2)

λ3
T

kB

. (5.40)

At our lowest temperatures, µJT ≈ 4 × 109 K/bar, about 10 orders of magnitude

larger than observed in classical gases.

To understand the origins of this enhancement, on dimensional grounds we write

µJT = cJTT/P , so cJT is dimensionless and T/P ∼ 1/(nthkB), where nth is the

thermal particle density. The value of cJT depends on the equation of state. In

the ideal gas, cJT = 0 in the classical limit, while cJT = 1/(α + 1) for a saturated

partially condensed Bose gas. Interaction corrections to cJT are essentially given by

the ratio of interaction and thermal energy. In the partially condensed sample, we

observe a drop in T by ≈ 22 nK. Meanwhile, the interaction energy per particle is

always smaller than (8π~2a/m)(Ni/V ), corresponding to under 4 nK. The change

in T therefore must predominantly be a purely quantum-statistical, rather than

an interaction, effect. Moreover, note that for a > 0 the drop in the interaction

energy should lead to slight heating rather than cooling of the gas. In our case
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the interaction corrections are unimportant and cJT ≈ 2/5, but for a classical gas

they are the only origin of the JT effect and typically cJT . 10−3. Another large

enhancement of µJT comes from the fact that in a saturated gas nth ∼ λ−3
T ∼ T 3/2

decreases with temperature, and our lowest nth is ∼ 107 times smaller than at

ambient temperature and pressure. Combining the differences in cJT and 1/nth,

we recover the ≈ 1010-fold increase in µJT compared to classical gases. It is also

interesting to note that µJT in Eq. (5.40) explicitly vanishes in the limit ~ → 0,

reiterating that this is a purely quantum effect.

On a final note, the sign of µJT in a bosonic gas is opposite to that in an ideal

Fermi gas [105].

89





Chapter 6

Spectroscopic Studies of a

Uniform BEC

Time-of-flight imaging allows measurements of the momentum distribution of weakly

interacting thermal atoms in a partially condensed cloud, and is the standard tech-

nique for BEC thermometry. However, this method can not be applied to study

the BEC ground state in momentum space for two reasons: first, the achievable

resolution is limited by our imaging system (see 3.6), and second, the momentum

distribution evolves during the time of flight due to both interactions and the resid-

ual external fields (see 5.3.2). An alternative measurement technique described in

this Chapter is Bragg spectroscopy.

Bragg scattering of atoms by a standing light wave [106, 107] is a fundamental

prediction of quantum theory. Following the observations of light scattering by

atomic lattices, i.e. crystals [108], as well as scattering of massive particles by

atomic lattices [109], it strikingly complemented other evidence for wave-particle

duality.

Following the demonstration of Bose-Einstein condensation, experimental focus

shifted from the scattering of atomic beams by a standing wave towards the scat-

tering of stationary ultra-cold atoms by a moving optical lattice [110–112].

Bragg spectroscopy has allowed measurements of the relative occupation of the

different momentum states in a degenerate gas [110] as well as the dynamic structure

factor [111]; it has also been used to directly measure the dispersion relation over a

wide range of momenta [113–115].

In a harmonically trapped condensate, the broadening of the Bragg spectrum due

to mean-field interactions exceeds by far the momentum width of the condensate

wave-function [110]. We shall see that this is not the case in our uniform BECs,
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allowing a direct measurement of the momentum occupation function. We start by

developing a theoretical description of Bragg spectroscopy for large recoil momenta,

before presenting our measurements.

6.1 Theory of Bragg spectroscopy

In this chapter we present measurements of the momentum distribution of quasi-

pure uniform BECs using Bragg scattering. Bragg-scattered atoms separate from

the stationary BEC in time-of-flight if the recoil momentum acquired by scattered

atoms, qr, exceeds the width of the BEC in momentum space, ∆p ∼ ~/L. At the

same time, having a smaller recoil momentum improves the momentum resolution.

The Bogoliubov dispersion relation predicts essentially free-particle behaviour at

momenta & ~/ξ, where ξ is the healing length (∼ 1.5µm for 105 atoms in a typical

box trap). Thus, we choose qr > ~/ξ > ~/L to be able apply the free-particle

dispersion relation. On the other hand, measurements of the Bogoliubov spectrum

in future experiments would require ~/ξ > qr > ~/L. In the measurements described

in this Chapter, qr ≈ m × 3 mm/s ∼ ~/(0.2µm) - about an order of magnitude

higher than ~/ξ. As we shall demonstrate below, the recoil momentum is mainly

determined by the beam geometry. In our system, this means that the range of

achievable qr is limited by the optical access available in our vacuum system.

We start by considering the interaction of atoms in the condensate with two

Bragg beams intersecting at an angle of 2θ (see Fig. 6.6 and Fig. 6.7 below). Assume

the two beams have wave vectors k1 and k2 = k1 − kr and frequencies f1 and

f2 = f1−f . The fractional frequency difference f/fj = kr/kj is minimal (for 780 nm

light it is typically ∼ 1 kHz/384 THz = 2.6× 10−12). We can write k = k1 ≈ k2 ,and

kr is determined by the intersection angle 2θ:

kr = 2k sin(θ). (6.1)

The corresponding recoil momentum acquired by an atom absorbing a photon from

beam one and re-emitting a photon into beam two is given by

qr = ~kr ∝ sin(θ). (6.2)

Consider an atom with initial momentum pi and energy Ei. The scattered atom has

momentum pf = pi + qr, and thus energy

Ef =
p2

f

2m
= Ei + Er +

pi · qr

m
, (6.3)
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Figure 6.1: Left to right: three equivalent theoretical descriptions of Bragg scatter-

ing in real space (top) and in momentum space (bottom). (a) Single-atom picture.

An atom undergoes a Raman transition by scattering a photon from beam 1 into

beam 2 (top). Energy and momentum conservation must be satisfied in the tran-

sition (bottom). Both beams are far from resonance (∆ � f0, δ). Detuning δ is

due to the Doppler shift or frequency shift f1 − f2 − f0 (see text). (b) Schrödinger

picture in the lab frame. Two crossed beams create a moving lattice (top). This

can be seen as a time-dependent perturbation, causing scattering between momen-

tum eigenstates, 0 → qr (bottom). (c) Schrödinger picture in the stationary lattice

frame. The condensate is initially moving left, and is Bragg-reflected by the lattice

(top). In the free-particle basis, momentum changes by qr (dashed lines, bottom).

In the basis of Bloch eigenstates, the momentum is restricted to the first Brillouin

zone (shaded), and remains unchanged. We show the first two bands of the dispersion

relation. Bragg scattering is described by the free evolution of the Bloch vector in the

two-state basis, with the level splitting given by the band gap. Resonance condition

(δ = 0) corresponds to the initial momentum being on the edge of the Brillouin zone

(see text).

with recoil energy Er ≡ q2
r /(2m). The transition is resonant when the photon energy

difference equals

hf = hf0(pi) ≡ Er +
pi · qr

m
(6.4)

The change in E and p due to the two-photon process is shown in Fig. 6.1 (a). We

define the detuning δ ≡ f − f0. As can be seen from the above resonance condition,

the detuning can be seen to arise due to either the Doppler shift [second term in
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(6.4)] or the change in frequency f .

6.1.1 Raman picture

To calculate the transition rates for a particular δ, we must address the atomic

nature of the process. Bragg scattering is effectively a Raman transition - both

photons are off-resonant, and the two-photon transition occurs via a virtual level,

as indicated by a dashed line in Fig. 6.1 (a). Thus, the transition can be described

by a single effective Rabi frequency [41]

Ω =
Ω1Ω2

2∆
=

I

Isat

Γ2

4∆
, (6.5)

where Ω1 = Ω2 are the Rabi frequencies of the single-photon transitions, ∆ is the

detuning of the individual beams from the atomic transition, I = I1 = I2 is the

intensity in each beam, Isat is the saturation intensity and Γ the linewidth of the

atomic transition. Thus, after subjecting the atoms to the Bragg beams for time τ ,

we expect the transferred fraction to be

P (pi → pi + qr) =
Ω2

Ω2 + δ2
sin2

(
1

2

√
Ω2 + δ2τ

)
, (6.6)

with δ = f − f0(pi). (6.7)

Next, we extend our treatment to a cloud with the momentum distribution |Ψ(p)|2

(Fig. 6.1 (b), bottom panel). We can predict the total number of transferred atoms

by integrating over all momenta; with the momentum wavefunction Ψ(p) normalized

to N , we expect the number of Bragg-diffracted atoms to be

NB =

∫
|Ψ(pi)|2P (pi → pi + qr)d

3pi. (6.8)

The integrand depends on the component of p parallel to qr only. The Doppler shift

term in (6.4) suggests that we can write momentum in Bragg frequency units via

p̃ =
qr

hm
p. (6.9)

Similarly, we introduce the recoil frequency fr = Er/h. Expression (6.8) becomes a

convolution:

NB(f) =

(
Ωτ

2

)2 ∫
|Ψ|2(p̃)× sinc2

(
1

2

√
Ω2 + (f − fr − p̃)2τ

)
dp̃. (6.10)

So far, we have considered population transfer (wavefunction amplitudes) only, using

equations (6.5) and (6.6). These are standard results of time-dependent perturba-

tion theory, and make use of the rotating wave approximation. Within the same
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framework, it is possible to find the phase evolution of each plane-wave eigenstate,

and thus the evolution of Ψ(p) during the Bragg pulse. We shall obtain these results

using a different approach, highlighting similarities with optical lattice experiments

and Bragg scattering in solid state physics.

6.1.2 Moving lattice picture

It is instructional to consider the (classical) light field created by the two beams.

Representing both beams by plane waves with equal amplitudes ε, and assuming

the polarization vectors of the two beams are parallel, we can write

Ej = εei(kj ·r−ωjt) with j = 1, 2, (6.11)

E = E1 + E2 = 2εei(
k1+k2

2
·r−ω1+ω2

2
t) cos

(
k2 − k1

2
· r− ω2 − ω1

2
t

)
. (6.12)

Expression (6.12) can be seen to represent an optical field with the slowly moving

envelope

|E| = 2ε cos

(
1

2
(kr · r− 2πft)

)
, (6.13)

with kr = qr/~. The rotating wave term (the phase term in E) is off-resonant,

and we can describe the effect on the Hamiltonian by the AC Stark shift potential

(3.5.3), which is proportional to the single-beam light intensity I ∝ ε2. This is of

the form

U(r, t) = ~
I

Isat

Γ2

4∆
× 4 cos2

(
1

2
(kr · r− 2πft)

)
. (6.14)

Comparing with (6.5), we can write:

U(r, t) =
~Ω

2
[1 + cos (kr · r− 2πft)] . (6.15)

We see that the potential is that of a moving 1D optical lattice with amplitude ~Ω,

as shown in Fig. 6.1 (b) (top panel). The lattice period is Λ = 2π/kr, and the lattice

velocity is vl = 2πf/kr. By changing the frequency detuning f alone, we can vary

the lattice velocity, and even simulate BECs in accelerating frames [116,117].

6.1.3 Bloch picture

Consider atoms initially at rest in the lab frame (pi = 0). The resonance condition

(6.4) simplifies to f0 = Er, and the lattice velocity becomes vl = vr/2, where vr =

qr/m is the recoil velocity. Upon scattering, the resonant atoms acquire twice the

lattice velocity. This result is obvious in a frame of reference where the lattice is
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stationary : in this moving frame, the atoms, initially moving at −vr/2, are reflected

by the lattice and acquire an opposite velocity of vr/2, as shown in Fig. 6.1 (c).

In the lattice frame, we can treat the lattice as a time-independent perturbation

to the free-particle Hamiltonian. Moreover, it is periodic, and in our case contains

only few Fourier components:

U(x) =
∑
G∈Zkr

uGe
iGx (6.16)

with u−kr = ukr = u =
~Ω

4
. (6.17)

The eigenstates of the periodic Hamiltonian can be found explicitly. These are given

by the Bloch functions [118] of the form

Φ(x) =
∑
G∈Zkr

ck+Ge
i(k+G)x (6.18)

The lattice momentum k is restricted to the first Brillouin zone, −kr/2 ≤ k ≤ kr/2.

The coefficients c, as well as the energies ε, can be determined from the Schrödinger

equation, which takes the form

(εk − ε)ck +
∑
G∈Zkr

uGck+G = 0, (6.19)

with εk = ~2k2/(2m). Because uG is only non-zero when G = ±kr, the Hamiltonian

is tridiagonal in matrix notation, with coupling between k and k±kr states only. In

practice, we only need to consider a small number of k. Initially, only k-states close

to −kr/2 are occupied. First-order transition can be describe by including states

with momenta k and k + kr only. Including other k is equivalent to considering

four-photon (and higher-order) transitions.

Expressing momenta in units of kr/2 and energies in units ofEr/4 = (kr/2)2/(2m),

the Hamiltonian (for k < 0) takes the form

H =

(
k2 u

u (k + 2)2

)
, (6.20)

with eigenenergies

ε± = k2 + 2

(
k + 1±

√
u2

4
+ (k + 1)2

)
(6.21)

and eigenvectors (
c±1

c±2

)
. (6.22)
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These corresponds to the first two Bloch bands, with wavefunctions

Φ±(x, t = 0) = c±1 e
ikx + c±2 e

i(k+kr)x (6.23)

Now, we can describe the time evolution of the BEC wavefunction in the Bloch

basis. The Bloch states evolve freely in time, according to1

Φ±(x, t) = Φ±(x, 0)e−iε±t. (6.24)

The BEC wavefunction in the lab frame, Ψ(k), transforms to the stationary-lattice

frame as Φ(k) = Ψ(k + k0), where ~k0 = −mvl is the momentum acquired by the

atoms upon the Galilean transformation, which relates to the previously defined

detuning in the Raman picture via (k0 − kr)/kr = δ/f0. After substituting vl in

suitable units, the band gap near the Brillouin zone boundary takes the familiar

form ε+ − ε− = 1
2

√
Ω2 + δ2. We can invert (6.23) to write the initial state as

Φ(x, 0) =

∫
Φ(k)eikxdk =

∫
Φ(k)

[
c−1 Φ−(x, 0) + c+

1 Φ+(x, 0)
]

dk. (6.25)

Subsequent evolution is described by

Φ(x, t) =

∫
Φ(k)

[
c−1 Φ−(x, t) + c+

1 Φ+(x, t)
]

dk (6.26)

⇒ Φ(x, t) =

∫
Φ(k)

[
(c−1 )2e−iε−t + (c+

1 )2e−iε+t
]
eikxdk

+

∫
Φ(k)

[
c−1 c

−
2 e
−iε−t + c+

1 c
+
2 e
−iε+t

]
ei(k+qr)xdk

(6.27)

The second term in (6.27) describes the growth of the scattered cloud. Its norm

corresponds to the diffracted atom number,

NB =

∫
|Φ(k)|2

∣∣c−1 c−2 e−i(ε+−ε−)t + c+
1 c

+
2 e
−iε+t

∣∣2 dk. (6.28)

This result turns out to be equivalent to (6.10). The key assumption in both cases

was that we consider first-order transitions between k-states separated by kr only.

In the Raman picture, we have neglected coupling via 4 and more photons, and in

the Bloch picture we have considered the two lowest bands only. The Bloch picture

has the advantage that it exposes a convenient basis that can be used as a starting

point for e.g. describing the effect of interactions. While we considered an infinite

lattice (neglecting the effect of box walls), the treatment can also be extended to

finite lattices [119].

1We set ~ = 1 for ease of notation
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6.1.4 Condensate wavefunction in momentum space

As shown above, Bragg spectroscopy naturally maps momentum p to frequency

f = f0 + qr
hm
p. The momentum distribution |Ψ(p)|2 maps to the scattered atom

number NB(f), which is always broadened due to the finite effective linewidth of

the transition, as described by the convolution (6.10). The minimum achievable

linewidth is of the order of Ω (see below). For small enough Ω and long enough τ , we

expect this broadening to be minimal, and we recover the condensate wavefunction.

We start by considering how this wavefunction depends on interatomic interactions.

In a box of length L, several possible cases are conceivable: first, if the mean-field

energy is very low, the condensate will be described by the non-interacting “particle

in a box” groundstate. If, on the other hand, the condensate is in the Thomas-Fermi

regime, we expect the wavefunction to be approximately a top-hat function. The

corresponding momentum distribution is then simply a sinc2 function, S(L), of zero-

to-zero width 2vr/L (in Bragg frequency units). In the intermediate regime, we must

consider the non-uniformity of the condensate within the healing length ξ from the

walls. In Figure 6.2 (a) we show the probability density |Ψ|2(x) for the three cases

(ξ = 0, 0.1,∞). For ξ . 0.2, the deviations of the wavefunction from the uniform

case are limited to the box edges, were the wavefunction follows Ψ(x) ∝ tanh
(

x√
2ξ

)
[23]. We apply the Fourier transform to the analytic representation of Ψ(x) thus

obtained, and plot the momentum distribution |Ψ(k)|2 in Fig. 6.2 (b). In our studies,

-1ê2 1ê2 xêL

»Y» 2

-3 p -2 p -p p 2 p 3 p
kL

»Y» 2

(a) (b)

Figure 6.2: Wavefunction in real space (a) and momentum space (b) for a non-

interacting BEC (red), and for an interacting BEC with ξ = 0 (blue) and ξ = 0.1L

(purple, dashed).

we seek to quantify the width of the momentum distribution of our condensate. A
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common way is to consider the root-mean-squared (RMS) width, given by

RMS2 =

∫
k2|Ψ(k)|2dk∫
|Ψ(k)|2dk

∝ Ekin. (6.29)

Unfortunately, this is infinite for a perfectly uniform condensate with sharp walls.

We plot the change in the RMS width with ξ in Fig. 6.3 (a). It is easy to show

that the kinetic energy density term is proportional to 1/ξ2 over a region of space

of the width ∼ ξ, meaning that the kinetic energy scales as 1/ξ for ξ � L. We

demonstrate this asymptotic behaviour in the inset in Fig. 6.3 (a). The extreme

sensitivity to ξ, as well as the noise issues associated with extracting the second

moment from the distribution’s wings, make it unsuitably for quantitative studies.

While the distribution wings decay slowly, the width of the central peak in the
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Figure 6.3: Measuring the width in momentum space: (a) root-mean-square width

(rms), and (b) full width at half-maximum (fwhm) for different ξ/L. Red lines indicate

result for the non-interacting wavefunction. Inset in (a) shows that the energy of the

condensate (∝ rms width squared) increases as 1/ξ for small ξ (see text).

momentum distribution is well-behaved. We quantify this using the full width at

half-maximum (FWHM). Fig. 6.3 (b) shows that the variations in the FWHM is

∼ 30% between ξ = 0 and ξ = ∞, with deviations from the ideal box on the order

of a few % in the experimentally relevant range.

The effect of finite wall steepness is similar to that of finite ξ. Generally, our

imaging resolution (∼ 5% in box length) is sufficient to distinguish ξ = 0 from

ξ = ∞, but it will largely mask the smaller effects of non-zero ξ and finite wall

width.
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6.1.5 Effect of Rabi frequency and pulse length

Next, we consider the broadening of the measured momentum distribution during

Bragg spectroscopy, as described by the convolution kernel in (6.10). For small Rabi

frequencies (Ωτ � 1), and thus small scattered fraction (NB/N � 1), the convolu-

tion kernel is a sinc2 with zero-to-zero width of 2/τ in frequency units. However,

even for large τ , we expect the measured momentum distribution to be broadened

by ∼ Ω. The measured Bragg spectrum for a given box length, S̃(L), will therefore

deviate from the Heisenberg-limited spectrum S(L). An illustration is shown in

Fig. 6.4.

-400 -200 0 200 400
f- f0êHz

5%

10%

15%

NBêN
L = 30µm, Ω = 8 Hz, τ = 35 ms

FWHM/Hz

real measured

ideal 118.9 124.5

uniform 88.6 94.0

Figure 6.4: Broadening of the measured momentum distribution in Bragg spec-

troscopy. We show the transfer fraction NB(f)/N vs f for ideal (non-interacting, red)

and uniform (Thomas-Fermi, blue) BECs. Dashed lines are Heisenberg-limited mo-

mentum spectra S in frequency units, solid lines are predicted experimental spectra S̃

calculated using (6.10). The FWHM is tabulated for each of the four spectra shown.

To minimize the broadening, we should therefore use the smallest possible Ω. The

transferred fraction at resonance scales ∼ (Ωτ)2, and we are thus forced to increase

τ to obtain a detectable signal. While this approach works well for stationary

clouds, the pulse length τ limits the time resolution when performing spectroscopy

on freely expanding clouds, or studying time dependence in general. It is intuitively

clear that short Bragg pulses will lead to excessive broadening for τ . L/vr, e.g.

10 ms for a 30µm box. We demonstrate this dependence in Fig. 6.5, where we plot

the broadening of the Thomas-Fermi momentum distribution versus τ while keeping

Ωτ same as in Fig. 6.4.

The choice of suitable τ and Ω will ultimately depend on the required time res-

olution and the detectable scattered fraction, as limited by the initial atom number

and the signal-to-noise ratio in the imaging system. While the broadening can not

be fully eliminated in our system, the theoretical understanding developed in the

preceding sections provides us with a quantitative, no-free-parameters model of the
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Figure 6.5: FWHM after Bragg spectroscopy vs τ for a uniform (strongly interacting)

cloud, computed using (6.10). L = 30µm, Ωτ = 8 Hz × 35 ms. For large τ , the

broadening does not disappear, but approaches a constant ∼ Ω.

Bragg spectroscopy precess. Both τ and Ω are well known in our experiments, the

latter from direct measurements of Rabi oscillations on resonance.

6.1.6 The mean-field shift

So far we have considered the effect of interactions on the condensate wavefunction

only. However, interactions will also affect the Bragg spectroscopy process. As a

direct consequence of the bosonic exchange symmetry, an atom scattered out of

a BEC will experience twice the mean-field energy compared to an atom in the

condensate ground state - often described as the “bosonic factor of two” [23]. This

changes the energy conservation condition (6.4) to

hf = hf0(pi) + γn0, (6.30)

with γ = 4π~2a/m and n0 = N0/V . The same result can be obtained by considering

the Taylor expansion of the Bogoliubov dispersion relation at large momenta.

For a typical box (L = 30µm, R = 16µm), this shift equals 32 Hz for each 105

atoms in the condensate. The Bragg spectroscopy peak will therefore be centered

on fc = fr + γn0. Bragg spectroscopy can thus be used to measure the mean-field

energy of a uniform BEC directly. In a non-uniform system, on the other hand,

the mean-field shift varies spatially due to variations in density. This can lead to

broadening of the spectroscopic peak, which in harmonic BECs has been seen to

greatly exceed the Heisenberg width [110].

Note that n0, and thus the shift (6.30), changes as n0 changes during the Bragg

pulse itself - another reason to keep Ωt small, and introduce suitable corrections.
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6.1.7 Time evolution and the GPE

Finally, we briefly mention the time evolution of freely expanding clouds, and es-

pecially their width in momentum space. The Thomas-Fermi approximation states

that the in-trap kinetic energy is negligible compared to the interaction energy.

However, the interaction energy is converted into kinetic energy upon expansion. It

is easy to see that the kinetic energy acquired per particle will be proportional to

the in-trap density. Unlike for BECs in harmonic traps [120], we are not aware of

an analytic form describing the expansion of a BEC from a cylindrical box trap.

The temporal evolution of the condensate wavefunction is described by the Gross-

Pitaevskii (GP) equation [23]:

i~
dΨ

dt
= − ~2

2m
∇2Ψ + UΨ + γ|Ψ|2Ψ (6.31)

As described above, the non-interacting part of the Hamiltonian is best solved in

momentum space, while the interacting part has to be solved in real space. We

thus employ a split-operator method, implemented by Alexander Gaunt. This pro-

vides numerical results for the real-space as well as momentum wavefunction of the

condensate after different expansion times. Combining the momentum wavefunc-

tion obtained by integrating the GP equation with our model of the Bragg transfer

process [equation (6.10], we can obtain a theoretical prediction for the width of the

Bragg spectrum, while considering the peak density of the cloud in real space allows

us to predict the mean-field shift of the Bragg peak. This proves extremely useful

in analyzing our experimental results, as shown below.

6.2 Experimental setup

To perform Bragg spectroscopy, we split a beam derived from the 780 nm repump

laser in two parts (affectionately referred to as “Henry” and “Lawrence”), as shown

in Fig. 6.6. The beams are thus detuned by 6.8 GHz from the nearest resonant

transition. Each beam passes through an AOM, and the frequency of one of the

AOMs is adjustable. Although the coherence length of our laser source is typically

on the order of meters, we took care to keep both optical paths (from the polarizing

beam splitter to the atoms) equal in length to within a centimeter. Finally, both

beams are intersected at an angle of 2θ ≈ 30◦, giving a recoil velocity of vr ≈ 3 mm/s.

Each beam is collimated to a width of approximately 3 mm, making the individual

beam size, as well as the intersection region of the two beams, much larger than
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Figure 6.6: Optical arrangement for Bragg spectroscopy.

our box trap, and thus providing an optical field of uniform intensity across the

condensate, both in situ and in time-of-flight.

Further, we stabilize the optical power in each of the beams using feedback

signals from independent photodiodes (see Fig. 6.6). This allows us to keep the Rabi

frequency Ω constant. We calibrate Ω by observing Rabi oscillations at resonance

(f ≈ f0). Since Ω is directly proportional to the optical power in the beams [equation

(6.5)], we can use the photodiode signal to measure Ω. For example, we adjust Ω

when we change the duration of the Bragg pulse τ to keep the scattered fraction

approximately constant in different experiments, as explained above.

We generally distinguish two different measurement regimes of Bragg spectroscopy:

in situ and in time-of-flight.

In the former case, the momentum distribution does not change with time, al-

lowing us to probe it using long pulses with τ & L/vr. This ensures that the

Bragg spectrum is not significantly Fourier-broadened. Equivalently, it ensures that

a recoiling atom can traverse the box during the pulse, and we thus probe phase

coherence across the whole BEC. To apply very long Bragg pulses on a trapped

cloud, we set the trap depth below the recoil energy hfr [see Fig. 6.7(a)], so the

diffracted atoms can continuously leave the box without bouncing off the trap walls.

In the case of ToF measurements, on the other hand, the wavefunction evolves in

time, and τ places an upper limit on our temporal resolution. We thus use shorter

pulses and increase Ω accordingly. We address in situ measurements first, before

discussing measurements in ToF.

103



6.3. GROUND-STATE WAVEFUNCTION IN MOMENTUM SPACE

pi 
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0.1 mm 

diffracted 
atoms 

Figure 6.7: Bragg spectroscopy of a uniform BEC. (a) A trapped atom with initial

momentum pi undergoes Bragg scattering (see text). The trap wall height (green) is

lower than the energy of the recoiling atoms. (b) Absorption image of the main cloud

and the diffracted atoms, after ≈ 150 ms of separation. After the Bragg pulse, the

non-diffracted atoms are released from the trap.

6.3 Ground-state wavefunction in momentum space

6.3.1 Spectrum width

In Fig. 6.8 we present our measurements of the momentum uncertainty of the con-

densed atoms in a box potential. Here τ = 35 ms and the Bragg Rabi frequency was

Ω/(2π) ≈ 8 Hz, keeping the fraction of diffracted atoms to . 15 %. We turn off the

trap 25 ms after the end of the Bragg pulse, and measure the fraction of diffracted

atoms after a further 110 ms of ToF [see Fig. 6.7(b)].

In Fig. 6.8 (a), we show measurements for L = 30 ± 1µm. As shown in the

left inset, L is determined by fitting the in-trap BEC density profile with a top-hat

function convolved with a Gaussian that accounts for our 5-µm imaging resolution

(as described in 4.3). In the main panel we show the measured Bragg spectrum,

centered2 on fc ≈ 1 kHz. The solid red line shows the sinc2 function S(L). The

dashed blue line shows the predicted spectrum S̃(L), taking into account the small

corrections due to the non-infinite τ and non-zero Ω, as described above. The data

is clearly extremely close to the Heisenberg limit, corresponding to a fully coherent

BEC wavefunction spanning the whole box.

We quantitatively compare different (measured and calculated) Bragg spectra

using their full-width-at-half-maximum W . In the right inset of Fig. 6.8 (a), we plot

the measured W versus the total atom number N , for L = 30µm. The solid red and

2Here, we take fc to be the experimentally determined center of the distribution. It is close to

fr, and we address small deviations from fr below.

104



6.3. GROUND-STATE WAVEFUNCTION IN MOMENTUM SPACE

- 3 0 0 0 3 0 0

0

5

1 0

1 5

0 1 0 0 2 0 0
0

1 0 0

0 2 0 4 0 6 00

5 0

1 0 0

1 5 0

2 0 0

dif
fra

cte
d f

rac
tio

n (
%)

f - f c  ( H z )

2  v r  / L

W 
(H

z)

N  ( 1 0 3 )

 W 0
H

 W H
 W H

W 
(H

z)

1 / L  ( m m - 1 )

- 2 0 0 2 0

( b )

 lin
e d

en
sity

z  ( µm )

L

( a )

Figure 6.8: Heisenberg-limited momentum spread in a uniform interacting BEC.

(a) Main panel: Bragg spectrum of a trapped BEC of length L = 30µm. The solid

red and dashed blue lines show the theoretical Heisenberg-limited spectra S(L) and

S̃(L), respectively (see text). Left inset: L is determined by fitting the in-trap BEC

density profile, accounting for the imaging resolution. Right inset: Spectral width

W versus the atom number N , for the same L. The filled square corresponds to the

data in the main panel, with W = (100± 3) Hz. The solid red and dashed blue lines

show WH = 0.89 vr/L = 87 Hz and W̃H = 93 Hz, corresponding to S(L) and S̃(L),

respectively. The dotted blue line shows W̃ 0
H = 123 Hz, expected for a non-interacting

BEC. (b) W versus inverse box length, 1/L, showing the expected Heisenberg scaling.

Solid red, dashed blue and dotted blue lines show WH, W̃H and W̃ 0
H, respectively.

dashed blue lines show the two calculated Heisenberg-limited values, WH for S(L)

and W̃H for S̃(L). For comparison, we also calculate W̃ 0
H (dotted blue line) for the

sine-like non-interacting ground state of the box potential. We see that interactions

reduce W below W̃ 0
H. Moreover, the measured W shows essentially no dependence

on N , as expected for a BEC of a spatially uniform density.

In Fig. 6.8 (b) we summarise data for a range of box lengths, L = 15 − 70µm.

Plotting W versus 1/L, we observe the expected Heisenberg scaling of the momen-

tum uncertainty.

6.3.2 Mean-field shifts

We now turn to the study of the ground-state energy of a uniform interacting BEC,

which is seen in the shift of the Bragg resonance, fc, from the recoil frequency fr.

Thanks to the extreme narrowness of our Bragg spectra, we can measure such shifts

with a precision of ≈ 2 Hz, corresponding to an energy of kB × 100 pK.

In Fig. 6.9 we plot fc versus N , for a fixed L ≈ 30µm and for two sets of Bragg

spectra, taken “in-trap” (solid symbols) and “in-ToF” (open symbols). The in-trap
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Figure 6.9: Interaction energy in a uniform BEC, for L = 30µm. We plot f0

versus N for Bragg pulses applied in-situ (solid squares) and after 50 ms of ToF

(open diamonds). Dashed line: f0 ≈ fr ≈ 975 Hz, solid line: f0 = fr + αN , with

α ≈ 20× 10−5 Hz/atom.

spectra are taken as above, with the main cloud trapped during the Bragg pulse.

For the in-ToF spectra we release the BEC from the box and let it expand for 50 ms

before applying the Bragg pulse. After long ToF the atomic density is negligible

and the N -independent fc provides a good measurement of fr ≈ 975 Hz. According

to 6.30, we can write

∆fc ≡ fc − fr = αN, (6.32)

with α = 2η~a/(mV ), where η is the condensed fraction3 and V is the volume of the

box. From in-situ images we get V = (25 ± 2) × 103 µm3. We assess η = 0.8 ± 0.1

by numerically simulating the fraction of Bragg-diffracted atoms for f = fc [see

Fig. 6.8 (a)]; here the uncertainty indicates variations between experimental runs.

This estimate is further supported by “BEC filtering” introduced in Ref. [121], i.e.,

using a short (4 ms) Bragg π-pulse to separate the BEC from the residual thermal

component in ToF4. We thus predict αth = (24± 2)× 10−5 Hz/atom.

From a linear fit to the in-trap data (solid line in Fig. 6.9) we get αexp = (20±1)×
10−5 Hz/atom, slightly below αth. This small difference is indeed expected for our

ΩRτ , due to the ≈ 15% depletion of the ground-state population during the pulse.

For N ≈ 200 × 103 we took additional measurements with a reduced ΩR [122] and

3Both before and after undergoing Bragg scattering an atom initially in the BEC feels the

same “double” interaction with any thermal component of the cloud. Bragg spectroscopy is thus

sensitive only to the ground-state interactions.
4Note that the small thermal fraction is not directly measurable from either standard ToF

images or the Bragg spectra such as shown in Fig. 6.8(a).
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6.4. EXPANSION OF A QUASI-PURE BEC FROM A UNIFORM TRAP

extrapolating to ΩR = 0 we get a slightly revised5 α̃exp = (23± 1)× 10−5 Hz/atom.

0 5 0 1 0 0 1 5 0 2 0 00
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1 0 0

1 5 0
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HM

 (H
z)

N  ( 1 0 3 )

Figure 6.10: Measured FWHM of the momentum distribution after 50 ms TOF for

different N (open diamonds). Simulated width shown (solid line).

Complementary to Fig. 6.9, in Fig. 6.10 we plot W values for the same in-ToF

Bragg spectra. Qualitatively, W now grows with N because during ToF interaction

energy gets converted into kinetic energy. Quantitatively, the problem of the expan-

sion of an interacting BEC from a box potential has not been solved analytically

(see [123] for the harmonic-trap case). However, we find good agreement between

our data and numerical simulations based on the GP equation (solid line). In our

simulations, we neglect the small thermal component and use the measured in-trap

BEC energy (∝ α̃expN) to predict W in ToF6.

6.4 Expansion of a quasi-pure BEC from a uni-

form trap

Finally, we study the evolution of the BEC in ToF, for L ≈ 30µm and N ≈ 200×
103. In Fig. 6.11 (a) we show absorption images of the expanding cloud (top), and

the corresponding GP-based simulations (bottom). The simulations reproduce the

characteristic diamond shape that emerges during ToF, also seen in Fig. 6.7 (b). In

Fig. 6.11 (b) we show the gradual decay of ∆f0 and growth of W for in-ToF Bragg

5The systematic uncertainty in α̃exp, due to the systematic uncertainty in our absolute atom-

number calibration, is 10%.
6We also take into account the small curvature of our gravity-compensating magnetic field (see

5.3.2). This has a noticeable effect only for very long ToF (& 100 ms).
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6.4. EXPANSION OF A QUASI-PURE BEC FROM A UNIFORM TRAP

spectra, again finding good agreement with our simulations (solid lines). Note that

in these experiments, and simulations, we reduced τ to 10 ms and increased ΩR/(2π)

to 28 Hz, reducing our spectral resolution in order to improve the time resolution.

0 ms 25 ms 50 ms 

(a) 

(b) 

(c) 

Figure 6.11: Evolution of the momentum distribution and mean-field energy of a

BEC released from a uniform trap (N = 125000). (a),(b) FWHM and f0 vs TOF:

measured (open diamonds) and simulated (solid line,see text). The solid square indi-

cates the value obtained from data in Fig. 6.9 by interpolation. (c) Measured (top

row) and simulated (bottom row) optical density images of the expanding cloud at 0,

25 and 50ms.
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6.4. EXPANSION OF A QUASI-PURE BEC FROM A UNIFORM TRAP

In conclusion, we have characterised the ground-state properties of an interacting

homogeneous Bose gas, including the Heisenberg-limited momentum distribution,

the interaction energy, and the free-expansion dynamics. An important by-result

of our measurements is that they place the most stringent bound so far on the

spatial uniformity of an ultracold gas produced in our optical box. While earlier

(thermodynamic) studies established uniformity on a 10− 100 nK energy scale [20,

21], all our present measurements indicate that our gas behaves as a homogeneous

system down to a sub-nK energy scale (corresponding to 20 Hz in frequency units).

Such a high degree of uniformity offers great promise for future studies of correlation

physics in a homogeneous gas in the T → 0 limit, for example for the preparation

and detection of topologically protected states [124].
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Chapter 7

Conclusions and Outlook

The system we chose to study in the experiments presented here - a uniform gas of

identical bosons - is a textbook example of a quantum many-body system. Its appeal

lies first and foremost in its fundamental importance and its apparent simplicity.

Nonetheless, as this Thesis hopefully demonstrates, the system’s behaviour is rich

and complex. Both the theoretical description and the experimental studies present

unique challenges. Importantly, however, it is the experimental implementation that

was lagging decades behind the theorists’ efforts. In the present work we tried to

provide the missing experimental tools, and thus went to some length in documenting

the details of technical nature.

The reader is probably aware that few of the experimental results presented here

were unexpected. In fact, we have stressed excellent agreement with theoretical

predictions throughout. Yet, none of these results could have been directly confirmed

prior to the implementation of the tools we describe. Thus, one important aspect of

this work is that it confirms existing mean-field theories in a textbook experimental

system. Yet another way to look at it is that all our experiments confirm the

quality of our system, in other words, we have shown that our system is indeed

close to the textbook system we set out to emulate, beyond current experimental

accuracy. Specifically, our implementation of a box trap is suitable for a variety of

high-precision measurements.

Several applications can be envisioned. Some are in the planning or construction

stage, while others are already producing promising results at the time of writing. As

typical for evolutionary progress, many of these rely on combining several techniques

previously explored in independent settings. Examples include:

� Uniform BECs with tunable interactions: A system producing BECs of 39K for
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loading into a uniform box trap is currently being built. Interaction strength

can be tuned over a wide range using a Feshbach resonance [28], thus allowing

further studies of interaction effects (including the potentially present beyond-

mean-field contributions).

� BECs in two dimensions: By reducing the length of our box trap, the gas can

be forced to effectively enter a 2D regime, where the reduced dimensionality

leads to qualitatively different behaviour.

� Domain dynamics near the phase transition: By quenching the ultra-cold gas,

we can observe the evolution of incoherent domains before coherence is es-

tablished throughout the volume. Bragg spectroscopy allows us to measure

the spatial correlation function, either by Fourier-transforming the momen-

tum distribution, or directly, by using interferometric methods. We envision

fundamental links to the Kibble-Zurek mechanism.

� Interferometric measurements using flexible geometries: Our light-shaping

methods allow the creation of multiple boxes simultaneously. Degenerate sam-

ples can be split and overlapped, and various implementations are imaginable.

� Transport phenomena: We can also create a pair of weakly coupled reservoirs,

with a narrow channel (either 2D or 1D) linking the two. Thermal and super-

fluid flow across the channel can be studied, in analogy with superfluid helium

experiments.

Overall, the work presented here will hopefully prove to be a useful step towards

further developments in the field of ultra-cold atoms. The enthusiasm and dedication

exhibited by every member of our group as they commit to these new challenges

leaves me certain that new results will be plentiful in the very near future.
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Appendix A

Performance of Grating-Stabilized

Diode Lasers

A.1 Grating-Stabilized Tunable Diode Laser Ba-

sics

One of the experimental appeals of 87Rb is the availability of relatively cheap and

maintenance-free laser diodes at 780 nm. Laser diodes utilize various semiconductor

geometries to provide a gain medium and a lasing cavity. Pumping is achieved

by passing a current through the semiconductor structure. For a review of basic

operating principles and available types of laser diodes we refer to [125]. The internal

cavity of a laser diode provides frequency selectivity due to its typical Fabry-Pérot

gain profile. However, the free spectral range of typically ∼ 50 GHz is much smaller

than the frequency range over which the lasing medium provides a significant gain.

The laser diode will thus typically emit a multi-mode signal at a range of frequencies.

To provide frequency selectivity, an external cavity with a frequency-selective output

coupler can be used. A diffractive grating adjusted such that it reflects a particular

non-zero order back into the laser diode allows us to select one of the internal cavity

modes, and the narrow width of the external cavity modes can further reduce the

line width of the output. The mode selection process is illustrated in Fig. A.1.

Multiple variants of the grating feedback mechanism have been successfully im-

plemented [125]. The two most widely used schemes are the Littman/Metclaf [42]

and the Littrow [45]. Most atomic physics experiments use variations of the latter,

mainly due to its simplicity and higher output power. A wide-spread design pro-

posed in [45] (Hänsch) is shown in Fig. A.2 (a). Several mechanisms allow tuning
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A.1. GRATING-STABILIZED TUNABLE DIODE LASER BASICS
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Figure A.1: Mode selectivity in a grating stabilized diode laser: main contributions

and tuning mechanisms

of the diode laser frequency. The internal cavity modes are tunable by adjusting

the temperature and/or the current. The external cavity is tunable by displacing

the grating, and the preferred grating feedback wavelength depends on the grat-

ing angle. For continuous frequency tuning, we must ensure that the same mode

receives maximum gain throughout, thus avoiding mode hops. It is important to

control grating angle, external cavity length and the diode current simultaneously.

The first two are usually controlled using a single piezoelectric actuator. Modulating

the diode current with a signal proportional to the piezo control voltage (“current

feed-forward”) improves the mode hop free scanning range and facilitates locking

(see below).
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Figure A.2: ECDLs in Littrow configuration: Hänsch design [45] (a), Sussex-

Melbourne design [47] (b) and Alex Gaunt design (c)
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A.2 Laser Design and Performance

The Hänsch design has two drawbacks: firstly, the output beam direction changes

if tuning over a wide range, and secondly, the grating feedback and external cavity

modes do not move at the same rate in frequency space (Fig. A.1), causing mode

hops. The first problem can be eliminated by introducing a mirror moving with the

grating [47], as shown in Fig. A.2 (b). Same design addresses the second issue by

introducing an additional piezoelectric actuator (“disk”) for cavity length control.

Another way is to choose a pivot point which maximizes the mode hop free tuning

range [44]. Alex Gaunt built a diode laser combining the benefits of an optimized

pivot point and fixed beam output direction by mounting a mirror in the moving

cantilever arm, as seen in Fig. A.2 (c). However, since the mode hop free range

required to resolve the hyperfine structure of Rb is very small (∼ 7 GHz), these

design features turned out to be far less important than the overall mechanical

stability, power and locking bandwidth.

Diode lasers can typically provide ∼ 20− 100 mW of power. Since this is clearly

not sufficient for cooling, it was decided to purchase a Toptica DLpro diode laser

with a BoosTA tapered amplifier, providing up to 100 mW before and 1.5 W after

the amplifier. The laser is supplied with an FPGA controlled digital locking system

and is highly stable and virtually maintenance free.

Following some previous in-house laser development by Phil Richman [126] and

Alex Gaunt, it was decided to use one of their designs for the repump laser. We

first address laser operation issues common to both lasers, and then discuss the

drawbacks of each design.

A.2.1 Laser Diodes and Alignment

Crucial to laser performance is the choice of diodes. Most important in our expe-

rience was to choose a diode with a free-running wavelength closest to 780 nm. It

is advantageous to tune the free-running wavelength of the diode (without grating

feedback) by changing the temperature prior to further alignment. A tunability of

+0.3 nm/K can be expected. Most laser diodes have a higher wavelength which

necessitates cooling, we are however restricted by the dew point, only allowing a 6 K

reduction in temperature. This corresponds to typically 2 nm wavelength change,

which is insufficient for some diodes. We made good progress with ADL-78901TL

diodes from Laser Components, achieving output powers of 60 mW at the desired

wavelength. Other high power diodes we tested included L785P090 and L785P100
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A.2. LASER DESIGN AND PERFORMANCE

from Thorlabs. They lased at 785 ± 1 nm and where unsuitable form our applica-

tions. Both lasers utilize a diode collimation package from Thorlabs. The first step

is to collimate the output beam by adjusting the lens. Output of most commercial

laser diodes is elliptic and plane polarized, with the polarization axis parallel to

the semi-minor axis of the ellipse. For improved resolution, we want to illuminate

as many grating lines as possible. This requires the laser diode to be rotated such

that the polarization plane is parallel to the grating lines. Both designs use the

-1st order reflection, with both the incidence and reflection angle close to 45◦. A

wavelength of ≈ 780 nm is achieved in this configuration if a 1800 mm−1 grating

is used. A small diffraction efficiency (< 0.3) is required to avoid diode damage

at high powers. The grating must be aligned such that it is perpendicular to the

beam plane. Both laser designs have a vertical adjustment screw. Coarse alignment

is achieved by observing the reflection off the diode facet and overlapping it with

the main beam. Further feedback optimization is best performed by measuring the

threshold current and minimizing it using both vertical and horizontal adjustment

screws. The grating position can then be scanned with an effective scanning range

of ∼ 10 GHz while tweaking current and temperature to achieve best mode hop

free performance near the desired absorption spectroscopy peaks (spectroscopy and

locking are discussed in B). Multi-mode lasing is often an issue. It leads to dramatic

deterioration in the error signal and can be easily spotted by observing the Fabry-

Pérot spectrum using a wavemeter. It is best corrected by making small adjustments

to the current. The performance of both lasers improves dramatically when using

a mechanically shielded enclosure, as shown in Fig. A.3. Heavy aluminium blocks

laser

aluminium block

aluminium block

insulating foam

aluminium enclosure

Sorbothane pad

optical table

Figure A.3: Components for mechanical shielding and thermal stabilization of

grating-stabilized diode lasers
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provide mechanical and thermal stability. A viscoelastic Sorbothane pad is used

for additional vibrational isolation. A layer of foam provides acoustic shielding and

impedes convection currents.

A.2.2 Alex Gaunt design

The first laser we used in the optical setup was built by Alex Gaunt with high mode

hop free scanning range in mind, necessitating a large distance between the pivot

point and the grating. The additional mirror also increased the oscillating mass

significantly. The long, thin cantilever deformed plastically on multiple occasions

and was not able to provide the restoring moment to follow the piezo stack at high

frequencies. In scanning mode, the effects can be reduced by avoiding discontinuous

sawtooth modulation and using a low-frequency triangle or sine wave instead. The

main drawback of the laser turned out to be its susceptibility to external noise. To

investigate the problem further, we performed eigenmode analysis of the cantilever

design using Autodesk Inventor Simulation. The two lowest eigenmodes are shown

in Fig. A.4.

f1 = 34 Hz f2 = 230 Hz

Figure A.4: Two lowest eigenmodes of the cantilever

The first eigenmode at f1 ≈ 34 Hz corresponds to the desired cantilever motion

during laser tuning. Its frequency however is very low due to the increased mass

and length compared to other common designs. For the grating to respond to the

piezo with a high enough bandwidth, the cantilever has to be pre-bent strongly,

approaching the limit of elastic deformation. The effect of reduced bandwidth is

clearly visible in the spectroscopy signal as ringing when driving the piezo with a

discontinuous signal like a sawtooth (see below).

The second lowest eigenfrequency of the cantilever is f2 ≈ 230 Hz and corre-

119



A.2. LASER DESIGN AND PERFORMANCE

sponds to a torsional mode. It appears due to the large mass of the mirror posi-

tioned out of the cantilever plane. Like the first eigenfrequency, it lies in the acoustic

range and the cantilever will be susceptible to noise. Unlike the bending however,

the torsional mode will lead to loss of feedback altogether, and thus severe mode

hopping.

The eigenfrequencies of a standard Hänsch design are much higher, and especially

the torsional modes only appear in the kHz region.

Using Alex Gaunt’s design in a saturated absorption spectroscopy setup, we were

able to resolve the hyperfine structure of the 87Rb D2 line in a single scan, i.e. with

a scanning range of at least 7 GHz. We where however unable to achieve stable

locking.

A.2.3 Phil Richman design

The laser built by Phil Richman is based on the Sussex-Melbourne design shown

above, however it lacks the second piezoelectric actuator (PZT disk). Its greatest

advantage is the ease of manufacture from standard parts. The heavy, spring-loaded

lever provided mechanical stability far superior to the laser by Alex Gaunt. Due to

the large lever length, the pizo stack only allowed a scanning range of ∼ 10 GHz,

which could easily be solved by replacing the stack. We only managed to achieve a

mode hop free scanning range of a few GHz, this was however sufficient to lock the

laser and use it in a MOT experiment. The laser often remained locked for hours,

was however subject to mechanical creep following alignment. Currently, we are

using this laser for MOT experiments with varying degrees of success. Due to the

compromised stability if the laser we decided to replace it with another DLPro.
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Appendix B

Saturated Absorption

Spectroscopy and Locking

Atomic physics experiments require laser sources which are stable to within a fraction

of the natural linewidth of the atomic transition. While the linewidth of an external

cavity diode laser is usually sufficiently small, drifts in the central frequency exceed

the 87Rb linewidth of 6 MHz by far. The frequency of the diode laser must thus be

actively stabilized using a feedback loop.

B.1 Principles of Absorption Spectroscopy

Absorption of a single probe beam passing through an atomic vapour will peak when

it is on resonance with an atomic transition. Absorption can be easily measured by

scanning the frequency of a tunable laser over the range of interest and recording

the transmitted beam intensity with a photodiode. Due to the Doppler effect, a

simple two-level atom moving at velocity v along the beam will only be on resonance

if the laser frequency ω satisfies ω = ω0 + kv, where ω0 is the actual transition

frequency and k the wavenumber of the laser. Since the velocities in a gas follow a

thermal distribution, every absorption peak will be Doppler-broadened by as much as

1 GHz in 87Rb at room temperature. While transitions in the D2 line with different

ground states can still be resolved, the hyperfine splitting of the excited state is not

detectable. A common method is to introduce a strong counterpropagating pump

beam derived from the same laser source. A moving atom sees the pump and the

probe beam at frequencies ω ± kv respectively. If we make the pump beam strong

enough (such that it exceeds the saturation intensity), it will deplete the ground

state population of resonant atoms, i.e. those satisfying ω = ω0 − kv. This will not
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affect the probe beam unless the latter is resonant with the same group of atoms,

which will only happen if v = 0 and ω = ω0. Is this the case, the absorption

of the probe beam will be greatly reduced and we will see a “Lamb dip” in the

absorption signal. The position and width of the Lamb dips is no longer affected by

the (first-order) Doppler effect.

The observed saturated absorption spectrum is more complicated for a multi-

level atom. If two atomic transitions at ω1 and ω2 share a common ground state,

we will see a drop in absorption for any of the four cases

ω − kv = ω1, ω + kv = ω1 (B.1)

ω − kv = ω2, ω + kv = ω2 (B.2)

ω − kv = ω1, ω + kv = ω2 (B.3)

ω − kv = ω2, ω + kv = ω1 (B.4)

Solving these, we see that a Lamb dip will appear at frequencies ω1, ω2 as well as

(ω1 + ω2)/2. The last one leads to the appearance of what is known as a cross-over

peak.

Finally, if the two transitions share a common excited state, the pump beam

resonant with the transition at ω1 will deplete the corresponding ground state and

increase the occupancy of the second ground state through spontaneous decays.

If the pump beam is resonant with the second transition at ω2 at the same time,

absorption will increase, showing as an inverted cross-over peak in the frequency

scan.

A typical spectroscopy setup is shown in Fig. B.1. The pump beam is retrore-

flected and used as the probe beam. A λ/4 wave plate before the mirror is used

to make the light circularly polarized. Its handedness changes upon reflection, and

after passing through the wave plate a second time the probe light’s polarization is

at 90◦ to that of the pump beam, enabling us to divert it to a photodiode.

A typical absorption spectroscopy signal obtained with this setup is shown in

Fig. B.2 (a). The F = 1 and F = 2 Doppler peaks in 87Rb are clearly visible,

as well as the peaks originating from 85Rb contained in the same vapour cell. The

hyperfine structure within each Doppler peak is visible through saturation peaks, as

shown for the repump transition in Fig. B.2 (b). All six peaks corresponding to the

F = 1 ground state can be clearly identified, including the three stronger crossover

peaks. The F = 1 → F ′ = 0 peak appears inverted, suggesting multiple closely

spaced ground states. This can be explained if one remembers that any external
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Figure B.1: A simple setup for saturated absorption spectroscopy and AC locking

magnetic field will split the F = 1 state into three Zeeman sub-states. There are

therefore three distinct transitions: σ+(|F = 1,mF = −1〉 → |F ′ = 0,mF ′ = 0〉),
π(|F = 1,mF = 0〉 → |F ′ = 0,mF ′ = 0〉) and σ−(|F = 1,mF = +1〉 → |F ′ =

0,mF ′ = 0〉). Each pair of these can produce an inverted cross-over peak. The six

peaks are not resolved for the small fields in question - typical Zeeman splitting in

the Earth field is 0.5 MHz. Note that for most magnetic field directions both the σ+

and the σ− transitions couple to either vertically or horizontally polarized light, in

particular for a B field along the laser beam. This is also the field direction for which

the π transition is not permitted with either polarization. The strength of each of

the corresponding peaks is therefore strongly dependant on the magnetic field di-

rection, and thus add up to a peak of variable strength. This is easily confirmed

experimentally by moving a bar magnet in proximity to the vapour cell. Experi-

mentally, we always observed the peak to be inverted, meaning that the cross-over

peaks dominate for all field directions.

B.2 Frequency Modulation Spectroscopy and Lock-

ing

To lock the laser frequency to one of the 87Rb D2 transitions we must derive an error

signal, that is a signal which is monotonous near the peak centre and zero when

the laser is on resonance. Using the spectroscopy signal s(ω), it is only possible

to lock to the side of one of the peaks (after introducing an offset to make it zero-

crossing). What we really need is its derivative. This can be achieved using frequency
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Figure B.2: Saturated absorption signals (red) and deriver error signals (blue). (a)

Scan over ∼ 10 GHz, showing the hyperfine structure of two Rb isotopes; (b) scan over

the 87RbF = 1 feature, with theoretical peak positions fitted to the data; (c) same

as (b) with modulation and the corresponding error signal; (d) magnified view of the

error signal slope centred on the (0,1) cross-over peak. (Alex Gaunt’s laser was used

for spectroscopy)

modulation spectroscopy [49]. Consider sinusoidal modulation of the laser frequency

around the centre frequency ω0: ω(t) = ω0 + A sinωmt. For small modulation

amplitude A, we can write s(t) ≈ s(ω0) + As′(ω0) sinωmt. Extracting the spectral

component at ωm therefore yields s′, which can be used as the error signal. This

is achieved using a lock-in amplifier shown schematically in Fig. B.1. Fig. B.2 (c)

shows the spectroscopy signal from Fig. B.2 (b) with added modulation in red, and

the derived error signal in blue. Optimizing the error signal quality is paramount

for stable locking. The error signal slope shown in Fig. B.2 (d) is indicative of

the maximum noise level for which stable locking is possible. The error signal is

processed using a proportional-integral-derivative controller (PID) which provides
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the feedback signal for adjusting the laser frequency.
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Appendix C

IGBT driver electronics

Our experimental sequence requires switching quadrupole coil currents of up to

200 A on the ms timescale. Insulated-gate bipolar transistors (IGBTs) are among

the few solid state devices capable of operating at such high currents (in our setup,

we use IGBTs of the type SEMiX402GB066HDs). In the process of building our

experiment, we have developed custom driver electronics with the intention of pro-

viding a reliable standard solution for the current as well as future BEC machines

and incorporating various safety features.

Figure C.1: IGBT driver curcuit: IGBT interface.

The gate capacity of an IGBT is typically high, requiring high driving currents.

A typical driving circuit is shown in Fig. C.1. At the input, it takes a TTL signal

derived from the logics circuit shown in Fig. C.2. The latter implements safety

features by combining inputs from external temperature sensors, coolant flow sensors

and interlocks. The safety shut-off is latching, and a reset must be forced to resume

operation. Further, the circuit provides facilities to set a maximum “on” time.

All components are assembled on a two-sided printed circuit board, as shown

in Fig. C.3. The interface to the IGBT is via a ribbon cable, and the system was
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designed with the ease of small-series assembly in mind. Figure C.4 shows two IGBT

drivers, together with the front panel, the IGBTs, water cooling, and high current

leads, assembled for use in a new BEC experiment currently under construction in

our group.
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Figure C.2: IGBT driver curcuit: TTL layout and external inputs.
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Figure C.3: IGBT driver implementation, showing the printed circuit board layout

(top, two copper layers shown in red and blue) and the assembled circuit(bottom).

Figure C.4: Two IGBT drivers in use. Front panel, two water-cooled IGBTs, and

ribbon cable leads carrying driving signals and temperature sensor signals are clearly

visible.
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Appendix D

Analysis Software

Ultra-cold atom experiments rely on analyzing thousands of optical density images.

We have developed custom software (“Image Analysis GUI”) for this purpose. The

software is implemented in MATLAB, and a clear separation between the front-end

(the graphical user interface, GUI) and the back-end (all processing and analysis

routines) is maintained. This allows us to use the back-end code in external batch-

processing routines to provide functionality not implemented in the GUI. Below, we

present the main components of the software.

D.1 Graphical user interface

The GUI is shown in Fig. D.1, and includes the following key components:

� Toolbar (topmost): provides import, export, auto-load and image sorting but-

tons.

� Thumbnail panel (top): provides a quick view of the open images.

� Properties tab (left): displays file information, allows the input of physical

parameters and the region of interest (ROI) to be used for image analysis.

� Inspect tab (left): shows properties of the ROI of individual pixels.

� Image tab (center): displays the selected image, its cuts and the fitting func-

tion.

� Summary tab (center): shows a table of all images with analysis results.

� Fitting tab (right): gives access to different analysis routines, allows fine-

tuning of fitting parameters and batch fitting.
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D.2. SOFTWARE ARCHITECTURE

Figure D.1: Image analysis GUI window, showing the main components of the user

interface (see text).

� Advanced tab (right): controls down-sampling and filtering of images.

D.2 Software architecture

We use object-oriented implementation. The following files and classes are provide

the core functionality

� AnalysisGUI62.m (executable): defines the user interface; maintains an array

of loaded images of the type ODImage.

� ThumnailViewer.m (class): defines the functionality of a scrollable panel of

thumbnails.

� ODImage.m (class): stores file path, name, image data, fitting data and all

other image information. ODImage.FitPlugin is used to store a fitting plugin

object implementing the mathematical fitting routines.
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D.2. SOFTWARE ARCHITECTURE

� Fitting plugins, e.g. Gauss2D.m, g alpha 2D ell mu0 excl count.m etc. (each

a handle class): implement the respective fitting routines. Their methods are

called from the respective ODImage object.

An important consideration was efficient memory use. Thus, ODImage.Compress()

and ODImage.Expand() routines are implemented to remove image data from RAM

when not needed for plotting or analysis and load it from the hard drive when

necessary.
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Appendix E

The polylogarithm function

E.1 Definition

The polylog function is commonly defined as

gα(x) =
∞∑
k=1

xk

kα
(E.1)

For α > 1 and x = 1, this becomes the Riemann zeta function:

gα(0) = ζ(α) (E.2)

Trivially, gα(x) converges as x→ 1 for α > 1 and diverges otherwise.

E.2 Integrals

Within the local density approximation, we often need to evaluate integrals of the

form ∫ ∞
−∞
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In the commonly encountered case n = 2, the pre-factor is 2Γ
(
1 + 1

2

)
=
√
π.
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Appendix F

Efficient numerical evaluation of

the polylogarithm functions

Polylogarithm functions gα(x) are used extensively in our image analysis routines.

Least-square fitting of a parametrised model to an optical-density can involve ∼ 108

evaluations of gα per image. Processing thousands of experimental runs in real-

time requires an efficient algorithm. Unfortunately, few standard libraries provide

the polylogarithm functions of arbitrary order. Wolfram Mathematica provides the

arbitrary-precisions function PolyLog[α, x]. In our applications, precisions well short

of machine precision is acceptable, while evaluation time is often critical. As a

starting point, we used the MATLAB implementation by M. Kuhnert [127], which

is in turn based on the numerical approximations derived in [128]. The relative

numerical error of this method is illustrated in Fig. F.1 for g0.5(x) and g1.5(x),

0 ≤ x < 1. It can be seen that the relative error never exceeds 10−5 - this is always

significantly lower than experimental errors in the optical density measurements.

While this method provides a huge improvement in speed compared to the built-in

Mathematica function (see Table F.1), we found that it was not allowing real-time

image processing (i.e., fitting a single image took longer than one repetition of the

experimental sequence).

We achieved more than a 10-fold improvement in evaluation speed by optimiz-

ing the evaluation order, without changing the mathematical approximations used

(Table F.1). The general principle is best illustrated by a simple example: assume

we are trying to evaluate a polynomial approximation of the form

p(x) = a0 + a1x+ · · ·+ anx
n (F.1)
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Figure F.1: Relative error of our numerical approximation for gα(x), plotted for

0 ≤ x < 1 for α = 0.5 (blue) and α = 1.5 (red)

method PolyLog [129] polylog [127] polylog [130]

evaluation time 40 s 0.2 s 0.018 s

relative speed 1/400 1 11

Table F.1: Benchamarks for different implementations of the polylogarithm function.

We evaluate gα(x) for n uniformly spaced points on [0, 1]. Data shown was obtained

for n = 105, α = 0.5. Test rig: Sony Vaio laptop, Intel(R) Core(TM) i7-3632QM

2.20GHz CPU, 8GB RAM, 64-bit Windows 7, Mathematica 9.0 64-bit, MATLAB

R2012n 64-bit.

Evaluating terms of the form xn requires (in the worst case) n multiplications1, for

a total of ∼ n2/2 multiplications to evaluate all terms in the above expression. On

the other hand, we can write

p(x) = a0 + x(a1 + x(a2 + x(· · · ))) (F.2)

for a total of only n multiplications. Further optimizations can be made, generally

by minimizing repeated calls to recursive sub-routines. A comparison between the

original and the improved code can be seen in the (shortened) listing below.

1Optimized algorithms allow an evaluation in ∼ log2(n) multiplications, by noticing that e.g.

x8 = ((x2)2)2. However, the difference is small for small n.
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1 function [y errors] = polylog(n,z)

2 %% polylog − Computes the n−based polylogarithm of z: Li n(z)

3 % Usage: [y errors] = PolyLog(n,z)

4 % Input: z < 1 : real/complex number or array

5 % n > −4 : base of polylogarithm

6 % Output: y ... value of polylogarithm

7 % errors ... number of errors

8

9 ...%error checking etc.

10 version = 2;

11 switch n

12 case 1

13 y = −log(1−z);
14 otherwise

15 switch version

16 case 1

17 % original, slower version

18 alpha = −log(z);
19 y = zeros(size(z));

20 j = find(abs(z)>0.55); % if |z | > 0.55

21 preterm = gamma(1−n)./alpha(j).ˆ(1−n);
22 nominator = b(0) + ...

23 − alpha(j).*( b(1) − 4*b(0)*b(4)/7/b(3) ) + ...

24 + alpha(j).ˆ2.*( b(2)/2 + b(0)*b(4)/7/b(2) + ...

25 − 4*b(1)*b(4)/7/b(3) ) − alpha(j).ˆ3.*( b(3)/6 + ...

26 − 2*b(0)*b(4)/105/b(1) + b(1)*b(4)/7/b(2) + ...

27 − 2*b(2)*b(4)/7/b(3) );

28 denominator = 1 + alpha(j).*4*b(4)/7/b(3) +...

29 + alpha(j).ˆ2.*b(4)/7/b(2) +...

30 + alpha(j).ˆ3.*2*b(4)/105/b(1) +...

31 + alpha(j).ˆ4.*b(4)/840/b(0);

32 y(j) = preterm + nominator ./ denominator;

33 j = find(abs(z)<=0.55); % if |z | <= 0.55

34 nominator = 6435*9ˆn.*S(n,z(j),8) − 27456*8ˆn*z(j).*S(n,z(j),7) + ...

35 + 48048*7ˆn*z(j).ˆ2.*S(n,z(j),6) − 44352*6ˆn*z(j).ˆ3.*S(n,z(j),5) + ...

36 + 23100*5ˆn*z(j).ˆ4.*S(n,z(j),4) − 6720*4ˆn.*z(j).ˆ5.*S(n,z(j),3) + ...

37 + 1008*3ˆn*z(j).ˆ6.*S(n,z(j),2) − 64*2ˆn*z(j).ˆ7.*S(n,z(j),1);

38 denominator = 6435*9ˆn − 27456*8ˆn*z(j) + ...

39 + 48048*7ˆn*z(j).ˆ2 − 44352*6ˆn*z(j).ˆ3 + ...

40 + 23100*5ˆn*z(j).ˆ4 − 6720*4ˆn*z(j).ˆ5 + ...

41 + 1008*3ˆn*z(j).ˆ6 − 64*2ˆn*z(j).ˆ7 + ...

42 + z(j).ˆ8;

43 y(j) = nominator ./ denominator;
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44 case 2

45 % new version optimized for array evaluation

46 y = zeros(size(z));

47 j = (z>0.55); % if |z | > 0.55

48 alpha = −log(z(j));
49 alphan = alpha;

50

51 preterm1 = gamma(1−n)./alpha.ˆ(1−n);
52 den1 = ones(size(alpha));

53 nom1 = b(0)* den1;

54 nom1 = nom1 − alpha.*( b(1) − 4*b(0)*b(4)/7/b(3) );

55 den1 = den1 + alpha.*4*b(4)/7/b(3);

56 alphan = alphan.*alpha; %alpha.ˆ2

57 nom1 = nom1 + alphan.* ...

58 ( b(2)/2 + b(0)*b(4)/7/b(2) − 4*b(1)*b(4)/7/b(3) );

59 den1 = den1 + alphan.*b(4)/7/b(2);

60 alphan = alphan.*alpha; %alpha.ˆ3

61 nom1 = nom1 − alphan.* ...

62 ( b(3)/6 − 2*b(0)*b(4)/105/b(1) + b(1)*b(4)/7/b(2) + ...

63 − 2*b(2)*b(4)/7/b(3) );

64 den1 = den1 + alphan.*2*b(4)/105/b(1);

65 alphan = alphan.*alpha; %alpha.ˆ4

66 den1 = den1 + alphan.*b(4)/840/b(0);

67 y(j) = (preterm1 + nom1./den1);

68 coeffs = [6435*9ˆn, −27456*8ˆn, 48048*7ˆn, −44352*6ˆn, ...

69 23100*5ˆn, −6720*4ˆn, 1008*3ˆn, −64*2ˆn, 1];

70 j = ˜j; % if |z | <= 0.55

71 z = z(j);

72 den2 = zeros(size(z));

73 nom2 = den2; %zeros

74 s = den2; %zeros

75 % last term first

76 den2 = den2 + coeffs(end);

77 zn = ones(size(z));

78 for i = 1:( length(coeffs)−1 )

79 zn = zn.*z;

80 s = s + zn./i.ˆn;

81 nom2 = nom2 + coeffs(end−i)*s./zn;
82 den2 = den2 + coeffs(end−i)./zn;
83 end

84 % at the end, zn = z.ˆ8

85 nom2 = nom2.*zn;

86 den2 = den2.*zn;
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87 y(j) = nom2./den2;

88 end

89 end

90 % define b

91 function out = b(i)

92 out = zeta(n−i);
93 end

94 % define partial sums S

95 function out = S(n,z,j)

96 out =0;

97 for i=1:j

98 out = out + z.ˆi./iˆn;

99 end

100 end

101 ...%define zeta(x) etc.

102 end
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