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Interference of an Array of Independent Bose-Einstein Condensates
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We have observed high-contrast matter wave interference between 30 Bose-Einstein condensates
with uncorrelated phases. Interferences were observed after the independent condensates were released
from a one-dimensional optical lattice and allowed to overlap. This phenomenon is explained with a
simple theoretical model, which generalizes the analysis of the interference of two condensates.
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FIG. 1. Interference of Bose-Einstein condensates with un-
correlated phases. (a) A deep 1D optical lattice splits a cigar-
shaped condensate into 30 independent BECs. (b) Absorption
image of the cloud after 22 ms of expansion from the lattice.
The density distribution shows clear interference fringes of
high contrast. (c) Axial density profile of the cloud, radially
averaged over the central 25 �m. The fit described in the text
gives a fringe amplitude A1 � 0:64 for this image.
Studies of Bose-Einstein condensates (BECs) loaded
into the periodic potential of an optical lattice have been
continuously growing in the recent years [1]. These sys-
tems have a great potential for a range of applications
such as modeling of solid state systems [2–6], preparation
of low-dimensional quantum gases [7,8], tuning of atom
properties [9,10], trapped atom interferometry [11,12],
and quantum information processing [13,14].

One of the most commonly used probes of these novel
systems are the interference patterns obtained when the
gas is released from the lattice, so that the wave packets
emanating from different lattice sites expand and overlap
[3,11]. In particular, the appearance of high-contrast
interference fringes in the resulting density distribution
is commonly associated with the presence of phase co-
herence between different lattice sites.

In this Letter, we study the interference of a regular
array of Bose-Einstein condensates with random relative
phases. Independent condensates, each containing �104

atoms, are produced in a one-dimensional (1D) optical
lattice, in the regime where the rate of tunneling between
the lattice sites is negligible on the time scale of the
experiment. Contrary to what could be naively expected,
we show that high-contrast interference fringes are com-
monly observed in this system. We present a theoretical
model, which quantitatively reproduces our experimental
results, and show that the periodicity of the lattice is
sufficient for the emergence of a periodic atomic distri-
bution after expansion, even in the absence of phase
coherence between the condensates. This conclusion is
independent of the dimensionality of the lattice. Our
results generalize the study of the interference between
two independent condensates [15–18]. In the last part of
the Letter we briefly discuss the potential of our system
for creating strongly number-squeezed states and report
on an unexplained heating effect, which occurs for a
narrow range of lattice depths.

Our experiments start with a quasipure 87Rb conden-
sate with 3� 105 atoms in the F � mF � 2 hyperfine
state. Condensates are produced by radio frequency
evaporation in a cylindrically symmetric magnetic trap.
The harmonic trapping frequencies are !?=2� � 74 Hz

radially, and !�0�
z =2� � 11 Hz axially, leading to cigar-
0031-9007=04=93(18)=180403(4)$22.50 
shaped condensates with a Thomas-Fermi (TF) length of
LTF � 84 �m, and a radius of RTF � 6 �m.

We then ramp up the periodic potential created by a 1D
optical lattice. The lattice is superimposed on the mag-
netic trapping potential along the long axis (z) of the
cigar [Fig. 1(a)]. Two equally polarized laser beams of
wavelength 
 � 532 nm intersect at an angle � �
0:20 rad to create a standing wave optical dipole potential
with a period of d � 
=�2 sin��=2�� � 2:7 �m. The two
beams are focused to waists of about 100 �m, and carry a
laser power of up to 220 mW each. The blue-detuned
laser light creates a repulsive potential for the atoms,
which accumulate at the nodes of the standing wave,
with the radial confinement being provided by the mag-
netic potential. Along z, the lattice potential has the shape

V�z� �
V0

2
cos�2�z=d�: (1)

The lattice depth at full laser power is V0=h 	 50 kHz,
and the number of occupied sites is N � LTF=d 	 30.

Thanks to the long lattice period and the large height of
the potential barrier between the sites, the 30 condensates
can be completely isolated from each other. The matrix
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FIG. 2. Polar plots of the fringe amplitudes and phases
�A1; B1� for 200 images obtained under the same experimental
conditions. (a) Phase-uncorrelated condensates. (b) Phase-
correlated condensates. Insets: Axial density profiles averaged
over the 200 images.
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element J for the tunneling between neighboring sites

scales as ERe

2

����������
V0=ER

p
, where ER� �h2k2=2m�h�80Hz,

k � �=d, and m is the atom mass. For our maximum
lattice depth of V0 	 600 ER, and n0 � 104 atoms per
site, the Rabi frequency n0J=h is less than 10
4 Hz and
tunneling is negligible.

At full lattice depth, the gas at each site is in a quasi-
two-dimensional regime. The motion along z is ‘‘frozen
out’’ because the oscillation frequency !z=�2�� is 4 kHz,
while the temperature and the chemical potential of the
gas correspond to frequencies smaller than 2.5 kHz. Each
condensate is therefore in the harmonic oscillator ground
state along z, with a density distribution given by a
Gaussian of width ‘ �

���������������������
�h=�2m!z�

p
� 120 nm � d.

In a typical experiment, we ramp up the lattice to V0 �
600 ER in �ramp � 200 ms. Initially, the chemical poten-
tial � is constant across the system; different lattice sites
contain different numbers of atoms, and the change in the
interaction energy from site to site exactly compensates
the change in the magnetic potential along z. As V0 is
ramped up, the cloud at each site gets more compressed,
the interaction energy increases, and a continuous redis-
tribution of particles is needed to maintain the uniformity
of �. Once tunneling becomes negligible (V0 * 100 ER),
the occupation of different sites becomes fixed and fur-
ther increase of V0 leads to chemical potentials which
differ from site to site. The independent evolution of each
BEC then leads to dephasing of the various sites on a time
scale of a few milliseconds (see below).

After holding the atoms in the lattice for another
�hold � 500 ms, the optical and the magnetic trap are
switched off simultaneously, and the density distribution
of the cloud is recorded by absorption imaging after t �
22 ms of time-of-flight (TOF) expansion. Despite the fact
that the phases of different BECs are completely uncorre-
lated, the images commonly show clear interference
fringes. A spectacular example of this surprising phe-
nomenon is given in Fig. 1(b) and 1(c) where the contrast
is >60%. Note that high-contrast interference is also
observed if the lattice is ramped up on a thermal cloud
with a temperature 3 times higher than the condensation
temperature, so that the subsequently produced conden-
sates ‘‘have never seen one another’’ [19].

We analyze the images by fitting the axial density
profiles [Fig. 1(c)] with �1A1 cos�B12�z=D��G�z�,
where G�z� is a Gaussian envelope. This procedure ex-
tracts the first-harmonic modulation of the distribution,
with the fitted period of 39 �m in agreement with the
expected valueD � ht=�md�. In Fig. 2(a), we summarize
our results for 200 consecutively taken images. In most
cases the fringe amplitude A1 is significant, with mean
value hA1i � 0:34. The phase B1 is randomly distributed
between 0 and 2�. Consequently, no periodic modulation
remains visible if we average the 200 density profiles.

In Fig. 2(b), we contrast this with the interference of 30
phase-correlated condensates. Here, we ramp up the lat-
180403-2
tice in �ramp � 3 ms and immediately release the BECs
from the trap, before their phases completely diffuse
away from each other. In this case, the fringe phases B1

are clearly not randomly distributed, and the sum of 200
images still shows interference fringes of pronounced
contrast. Phase correlations between the separated BECs
were lost if the lattice was left on for �hold � 3 ms.

We have numerically simulated our experiments with
phase-uncorrelated condensates using the following
model. We consider a 1D array of N � 30 BECs initially
localized at positions zn � nd (n � 1; . . . ; N), and as-
sume that each condensate is in a coherent state described
by an amplitude �n and a phase  n [20]. We set �n /
n�N 
 n�, corresponding to the Thomas-Fermi profile of
the BEC at the point when the lattice is switched on. For
expansion times t� 1=!z 	 40 �s, the atom density at
position z is given by [8]:

I�z� /
��������
XN

n�1

�ne
i neim�z
zn�

2=�2 �ht�e
�z
zn�2=Z20

��������
2

(2)

where Z0 � �ht=�m‘�. We neglected the effects of the
atomic interactions during the expansion. We perform a
Monte Carlo analysis of I�z� by assigning sets of random
numbers to the phases f ng. We convolve the resulting
density profiles with a Gaussian of 5 �m width to account
for the finite resolution of our imaging system, and then
fit them in the same way as the experimental data. The
fitted fringe phase B1 is randomly distributed between 0
and 2�. For the fringe amplitude we find hA1i

sim � 0:31,
in excellent agreement with the experiment [21].

In order to give a more intuitive explanation of our
observations, and generalize our analysis to arbitrarily
large N, we make the following simplifications. We as-
sume that all condensates contain the same average num-
ber of atoms, �n � �, and that the expansion time t is
large, so that ‘; zn � Z0;

�����������
�ht=m

p
. In this case, Eq. (2) can

be rewritten in the form I�z� / N�2e
2z2=Z20F�z�, where

F�z� � 1
XN
1

n�1

An cos�Bn  2�nz=D� (3)
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is a periodic function with period D � ht=�md� and
average value 1. F�z� contains all the information
about the contrast of the interference pattern. The ampli-
tude An and the phase Bn of the n-th harmonic of F�z�
are given by the modulus and the argument of
�2=N�

PN
j�n1 e

i� j
 j
n�.
If the N condensates have the same phase, F�z� corre-

sponds to the usual function describing the diffraction of
a coherent wave on a grating

F�z� �
1

N
sin2�N�z=D�

sin2��z=D�
: (4)

In this case, F�z� has sharp peaks of height N and width
�1=N at positions z � pD, where p is an integer. In
between the peaks, F�z� � 0.

We now turn to the case of uncorrelated phases f ng.
Using Monte Carlo sampling, we find for 10 � N � 104:

hFmaxi � 1:2 ln�N� � 1 hFmini �
0:2
N

� 1 (5)

where Fmax and Fmin are the maximum and the minimum
‘‘single-shot’’ values of F�z�, i.e., for a given set f ng.
This shows that even for very large N, most single-shot
F�z� are strongly modulated. However, the width of the
peaks of height Fmax is �1=N, and the fraction of the
atoms contained in these peaks vanishes for N ! 1.

We can recover the scaling laws of Eq. (5) by noticing
that: (i) for large N, the probability distribution of F at
any given point z is the same as for the laser intensity
distribution for speckle, p�F� � e
F, and (ii) the density
distribution over an interval of length D consists of �N
independent values of F [22], so that the probability
distributions for Fmax and Fmin are Ne
F�1
 e
F�N
1

and Ne
NF, respectively.
The shape of F�z� and the positions of its extrema vary

randomly from shot to shot, and the density modulations
can for most part be thought of as noise. In particular, the
result hF2i � 2hFi2 (for N � 1) is characteristic of the
Hanbury Brown and Twiss correlations for a fluctuating
classical field. However, the underlying order of the lattice
structure is sufficient to insure that this noise is strongly
correlated [22], so that F�z� is periodic with the same
period D as in the coherent case.

The harmonic content of single-shot F�z� is given by
Cn � hA2

ni � 4�N 
 n�=N2, each An resulting from sum-
ming N 
 n complex numbers with random phases and
moduli 2=N. Note that

������
C1

p
	 2=

����
N

p
	 0:36 for N � 30,

which is close to the observed hA1i. The large modulation
of F�z� for N ! 1 can be understood by noticing that
while the weight of each harmonic decreases, their num-
ber increases [23]. It is interesting to contrast this with
averaging N shots of two-condensate interference with an
irreproducible phase [18]. In the latter case, the weight of
the first harmonic is twice smaller and all the higher
harmonics are absent, leading to a vanishing density
modulation for large N.
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We obtain similar results if we choose for the initial
state a Mott insulator with exactly one atom per lattice
site (see also [22]). In this case, the signal after TOF
consists of the set of coordinates '1; . . . ; 'N where the N
atoms are detected, and its harmonic content is given by:

Cn �
4

N�N 
 1�

XN

j�1

X

j0�j

hei2��'j
'j0 �n=Di

where h. . .i now denotes a quantum average. A simple
calculation gives Cn�0 � 4�N 
 n�=�N�N 
 1��.

All of our arguments naturally extend into two and
three dimensions (3D). In 3D, the function generalizing
Eq. (3) is F�r� � 1

P
nAn cos�Bn  2�n � r=D� where

n � �nx; ny; nz� is a triplet of integers. This is a periodic
function in x; y; z with a period D. In the experimental
study of the superfluid to Mott insulator transition with
cold atoms in 3D lattices [3,7], the disappearance of
interference fringes is observed in the insulating domain,
and used as one of the signatures for the loss of long range
phase coherence. This seems in contradiction with our
results. However one can reconcile the two findings by
noticing that the experiments [3,7] are analyzed by in-
tegrating the density distribution I�r� along the line of
observation z. In this case, only the harmonics �nx; ny; 0�
are observed (see also [24]), which reduces the modula-
tion amplitude by

������
Nz

p
, where Nz is the number of sites

along z. In fact, the effect is similar to that of averaging
Nz images in a two-dimensional experiment [25].

In the next part of this Letter, we briefly discuss the
potential of our setup for producing ‘‘number-squeezed’’
states with large occupation numbers [11], where the atom
number on each site has a sub-Poissonian distribution
with an average value n0 � 1 and a standard deviation
*<

�����
n0

p
. Such states are important for atom interferom-

etry and precision measurements [28].
For simplicity, we restrict our discussion to the case of

translational invariance, without the quadratic magnetic
potential applied along the z axis. In the ground state of
the system, the squeezing of the atom number on each site
depends on the ratio of the tunneling rate ~t � n0J=h and
the effective strength of the repulsive on site interactions
U��=n0, where � is the chemical potential. To give a
sense of scale, in our case n0 � 104 and U=h� 0:2 Hz.
We can qualitatively distinguish three regimes [11,29]: (i)
For J � n0U, squeezing is negligible and the atom num-
ber on each site follows a Poissonian distribution (* ������
n0

p
� 100). (ii) For J�U (~t� 200 Hz), squeezing is

significant and * is reduced to n1=40 � 10. (iii) Finally, a
phase transition to a Mott insulator state with *< 1
occurs for J�U=n0 (~t� 0:2 Hz).

In our setup, we can tune the value of J across this full
range, and the criterion for the Mott transition with n0 �
104 atoms per site is satisfied for V0 � 100
 150ER.
However, we point out two practical difficulties which
arise for such large values of n0. First, for the system to be
180403-3
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FIG. 3. Axial size of the cloud after 22 ms of expansion as a
function of the lattice depth V0. Inset: Zoom-in on the region
where an unexplained heating of the cloud occurs. For all data
points the lattice was raised in �ramp � 200 ms and left on for
�hold � 500 ms before TOF. Error bars are statistical. Outside
the heating region, the slow increase of the axial size matches
the expected dependence Z0 / 1=‘ / V1=4

0 .
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in its ground state, all decoherence processes, such as
particle loss, must have rates lower than ~t. Second, the
assumed translational invariance must be insured to a
sufficient level, so that the potential energies at different
lattice sites match to better than n0J � h~t. While it seems
difficult to fulfill these criteria for the values of ~t low
enough for the Mott transition to occur, the regime of
strong squeezing, * & n1=40 , should be accessible.

In exploring the range of lattice depths 0–150 ER, we
have also observed an unexplained heating effect. For
20<V0=ER < 45 we observe strong heating of the sys-
tem, which peaks for V0=ER 	 25 and 35 (Fig. 3). The
peak heating rate is �200 nK=s as long as the gas is at
least partially condensed. However, once the condensate
disappears, heating of the thermal cloud becomes negli-
gible (<10 nK=s). Outside 20< V0=ER < 45, heating due
to the lattice is always negligible, independent of the
lattice depth or the condensed fraction. We could not
attribute this heating to any trivial technical effect, and
it would be interesting to investigate further whether it is
related to the onset of isolation and number squeezing of
the BECs.

In conclusion, we have studied a 1D periodic array of
independent condensates prepared in a deep optical lat-
tice. We have shown that most single-shot realizations of
this system show high-contrast interference patterns in a
time-of-flight expansion. We have explained this effect
with a simple model which naturally extends to 3D latti-
ces. This initially surprising result should be taken into
account in the ongoing studies of atomic superfluidity and
coherence in optical lattices, where the contrast of the
interference patterns is often used as a diagnostic.
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Note added.— Since the submission of this manuscript,
two related theoretical papers have appeared [30,31].
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